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Abstract

A new approach is presented to describe spiral wave kinematics for
many kinds of biological, chemical or ecological excitable media. In
the framework of the approach a free boundary problem is formulated
for both the front and the back of the excitation wave propagating in
a two-component reaction-diffusion system. The boundary of excited
region is considered as united continuous curve moving in a plane. In
contrast to well known kinematical models it is assumed that the wave
front is a boundary layer between excited and unexcited regions
rather than thin line. It is shown that such approximation is
necessary to reproduce important qualitative properties of spiral
waves. This approach removes contradictions between some predictions
of known free boundary formulations and the data of numerical and
natural experiments.
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Introduction

The spatio-temporal evolution of many kinds of biological,
chemical or ecological systems is closely related to autowave
phenomena (Zhabotinskii 1974, Winfree 1978, Svirezhev 1987). 1In
particular, the rotating spiral autowave is a typical example of
selfsustained activity in a two-dimensional excitable medium, such as
heart muscle (Allesie et al 1973), chicken retina (Gorelova and Bures
1983) and Belousov-Zhabotinsky solution (Miiller et al 1987).

There are two basic trends in the development of the modern
theory of the spiral waves: the ‘geometrical approach’ and ‘free
boundary formulations’. Both of them are based on the classical works
(Wiener and Rosenblueth 1946) and (Burton at al 1951) and consider
the autowave front as a thin curve the position and the shape of
which change with time.

The main purpose of the geometrical approach is to describe the
evolution of the autowave front for stationary or non-stationary
processes in excitable media (Zykov and Petrov 1977, Zykov and
Morozova 1979, Zykov 1984, Davydov et al 1991). But it is impossible
to study the structure of the spiral wave core with the aid of this
method. On the other hand, the spiral wave structure is studied
within the framework of the second approach, the free boundary
formulation (Fife 1976, Tyson and Keener 1988, Meron and Pelce 1988,
Karma 1991, Pelce and Sun 1991). But this approach is oriented only
towards investigation of stationary processes such as rigid rotation
of the spiral wave.

Now, one of the central problem in the spiral wave theory is to
describe the processes within the spiral core under nonstationary
circulation, especially related to the description of spiral wave
meandering. To solve this problem, however, neither the geometrical
approach nor free boundary formulations can be used.

The main ideas of a new approach described below is to consider
the autowave front as a boundary layer rather than a thin curve.
Hence, we shall assume that the triggering of the system from
recovery to the excited state is not a steep jump, but a rather
smooth process.

Reaction-diffusion model

The kinematical model can be used to simplify the study of
autowave pattern formation in different types of reaction - diffusion
models. As an example, let us consider a two-component reaction
diffusion model with single diffusion and N-shaped function f in the
equation for trigger variable:
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We fix the following values of the parameters: kf = 1.7, k = 2,
g
a = 0.1, ¢ = 0.01, kE = 1.5. In this case one can observe the

formation of rigidly rotating spiral wave for any values of the small
parameter ¢ within the interval 0 < € < 0.388 (Zykov 1986).

Moreover it was shown by direct integration of (1), (2)
(Mikhailov and Zykov 19291), that the rotation period of the spiral
wave is U-shaped function on the parameter e¢. The first test for the
boundary layer kinematical model is to reproduce this dependence.

Free boundary formulation

The boundary of any autowave (i.e. curve E=const) consists of
two parts. These are the front (dE/dt>0) and the back (dE/dt<0) of
the wave. For a broken autowave these two curves touch each other in
the so-called ’‘phase change point’ (dE/dt=0) (Gulko and Petrov 1972).

Denote the arc length of the boundary as s; s = 0 for phase
change point; s > 0 for the front and s < 0 for the back. To specify
the boundary we use the natural equation K = K(s), where K is the

curvature. Denote as 6{s) the normal velocity and as V(s) the
tangential velocity of a given boundary point. It was shown in (Zykov
1984) that these three functions obey the £following system of
differential equations
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with the initial conditions
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It is also well known that the normal wave front velocity
depends on the curvature and on the value of the slow variable on the
front. We present this dependence as a linear function:
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B=90+K-Ag' {4)

It is necessary to obtain the solution of egs. (3), (4), (2) which
satisfies the given boundary conditions. Particulary, in a boundless
medium curvature K(s) should vanish if the absolute value of s goes
to infinity. We emphasize here that the evolution of wvariable g in
(4) obeys equation (2), for which the values of E are different in
excited, recovery and boundary layer portions of the autowave.

For further more detailed explanation let us now consider the
case of one spatial dimension.

One spatial dimension case

A rough scheme of a wave train profile is shown in fig.la which
is typical for the free boundary formulations. The variable E jumps
from the unexcited state (E=0) to the excited one (E=1) and then the
variations of the slow variable g occur obeying eq.{2). The value of
the slow variable on the front is, in fact, the refractory tail of
the previous impuls.

The situation is different in the framework of the boundary
layer model (see fig.lb). Here the wave front is a boundary layer
with a thickness H. Within this layer one has to take into account
the wvariation of the slow variable. To simplify the calculations
assume that inside the boundary layer the value of the wvariable E is
equal to the mean wvalue El.

H
E =1/Hf E df
0
For the special case of linear growthof E we get E = 0.5.Then we

have the following system for describing the time evolution of the
slow variable:

g =k - exp(-De) (k - g)
b g g £

gl = gbexp(-(T - D - Tl)kEE) (5)
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where == and g, are the values of g for the back, boundary layer

g = g, + Tle(kgEl - gl)

and front respectively. T is the period of the wave train, D the
duration of the impulses and T the duration of a jump of the system

to the excited state:

T]_ = H/g (6)
It is important that even for the case of solitary impuls the

value gf is not equal to =zero, in contrast to the common
model. Following eg.(5) g, is din this case proportional to €.

Substituting this wvalue in (4) we obtain the dependence of
propagation velocity 6 on the small parameter ¢.

f =86 - € H/6 k AR (7)
0 g 1

One can compare this dependence derived in the framework of boundary
layer model with the well known dependence related to the reaction -
diffusion model
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Obviously the dependence (8) can be reproduced in the boundary
layer model by choosing the thickness of the boundary layer as

H = 6061/(kgElA} (9}

Thus the thickness of the boundary layer is a well
definedparameter, since there are analytical expressions for values
of BO, 91 and A for a given reaction-diffusion model (e.g., in (Zvkov

1984)). Particulary for the given model (1}, (2) we have obtained the
following values: 60 = T.8; 61= 0.5, A = 2.0. Hence one can calculate

from (92) that the boundary layer thickness is H = 0.375.
Steadily rotating spiral wave

In this section we assume that a spiral wave rotates with
angular wvelocity w® around a fixed central point which can be
considered as the origin of a polar coordinate system (see
fig.2) .There is a boundary layer with thickness H along the whole
length of a wave front.

For any radius x> rq there is periodical picture of excitation

along the polar angle fB. The system of equations for the values of
variable g for a given r is very similar to (5):

g = kg = eXP[-(Bf- Bb)e/w] (kg - gf)
g, = gbexP[—(zﬂ - Bf+ ﬁb— Bl)keE] {(10)

g, = kgEl— (kgE1 - gl} exp{-ﬁle/w)

wherethe angles ﬁf, Bb, Bl determine the position of the front, the
back and the boundary layer respectively and the angel Bl is the

effective thickness of the boundary layer expressed in polar
coordinates.

The wvalue of Bl is found as a result of solving a pure

geometrical problem which leads to the following egquation:
(Kr -sina)cosﬁl—cosa sin61= Kr -sino - (KH2-2H)/(2r) (11)

where r is the radius and w is the angle between tangent and radial
directions for given arc length.
With Bl< 1 the equation (11) has the following solution

cosa - {cosza + (Kr - sina)(ﬁzK ™ ZH)/J:]”2
g = {12)
Kr - sing

It is very important to stress that in contrast to the one
spatial dimension case the effective thickness of the boundary layer
is not a constant but differs along the spiral wave front. Hence the
value of the slow variable g on the front differs with arc length.
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In oder to find the form of the spiral wave it is necessary to
integrate the system (3),(4) taking into account (10) and (11). To
simplify the calculations one can express the values of cosa and sino
in terms of the front velocities:

coso 8/ (wr) (13)

1]

sino v/ (wr) (14)

There are two unknown parameters in the system of egs.
(3),(4), (10), (11} : the angular velocity w and the tangential velocity
VO. Of course, the shape of the front and the back will depend

onthese values. In particular, there is only ome value of v for which
the front curvature K(s) vanishes when s goes to infinity.This is the
natural boundary conditions for our problem, asalready pointed out in
section 3. This way © was fitted by direct integration of the
equations. Similary one can fit a single value of V0 to obtain the

corresponding shape of the back curve.

In fig.3 the dependence of w on ¢ is shown as obtained with the
boundary layer kinimatical model and compared with to the data of
direct integration of the system (1), (2). The results of computation
with H = 0 are also shown. This limiting case of the boundary layer
model is identical to the wave front interaction model considered in
(Pelce and Sun 1991). It is obvious that the results of the boundazry
layer model is in a better agreement with the result of direct
integration of the reaction-diffusion model.

In addition, we obtain new information about the spiral core.

In fig.4 the distribution of the slow wvariable g along
the boundary is depicted. For the boundary layer model it is a
smoothly decreasing function (fig.4a). At the wave tip (s = 0) there
is same positive value of gwhich, of course, depends on €.

By contrast, for the wave front interaction model (H=0) the
value of g is equal to zero at the tip for any € (fig.4b). sSuch
distribution of g contradicts the data directly computed from
different kinds of reaction-diffusion models.

Conclusions

Some new approach to iInvestigate autowaves kinematics is
suggested. It is based on both the geometrical approach and the free
boundary formulation. In contrast to these two approaches the whole
medium is separated into three regions. The boundary layer is placed
between the two common regions (excited and recovery). This new step
of approximation essentially improves both qualitative and
quantitative description of the spiral wave motion, particulary, the
description of the spiral wave core.

This new approach can be considered as a modification of the
geometrical approach to the description of autowave patterns and can
be applied to different types of excitable media.
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Fig.l . Variations of the components E (solid) and g (dashed) in a
wave train for common model (a) and for boundary layer model (b).

Fig.2. The shape of the steadily rotating spiral wave {(solid) and the
position of the boundary layer (dashed). Point g is the phase
change point.
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Fig.3. The dependence of angular velocity « on small parameter ¢
obtained for reaction - diffusion model (soclid), boundary layer
model (dashed) and wave front interaction model (dotted).
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Fig.4. The distribution of the slow variable g along the wave
boundary computed (a) for boundary layer model and (b) for
wave front interaction model.




