Escaping Static and Cyclic Behavior
in Autonomous Agents

Brian Yamauchi, and Randall Beer, ,

Department of Computer Engineering and Science,
Department of Biology,
Case Western Reserve University
Cleveland, Ohio 44106

yamauchi@alpha.ces.cwru.edu
beer@alpha.ces.cwru.edu

Abstract

Animals possess behaviors that have evolved to handle routine interactions
between an organism and its environment. Likewise, most autonomous robots
are controlled by a set of behaviors designed to deal with routine interactions
between a robot and its enviromment. A fundamental difference between
animals and robots is that amimals also have strategies for dealing with the
situations that arise when routine behavior fails, and most robots do not. We
call these strategies exploratory behaviors, and we investigate two of these
behaviors in this paper — one for detecting and escaping behavioral stasis, and
another for detecting and escaping behavioral cycles. These behaviors are
applied te the task of finding food using chemotaxis in am environment
containing obstacles, and we present experimental results describing the
performance of agents using these behaviors.

Exploratory Behavior

We are interested in providing robots with the ability to deal with unexpected
events that is common in most animals. Animals, like robots, have a repertoire of
behaviors for dealing with their routine interactions with their environment. However,
unlike most robots, amimals also have behaviors for dealing with non-routine
interactions with their environment.

We call these behaviors for non-routine interaction with the environment
exploratory behaviors, and we would like to provide autonomous agents with similar
capabilities. There are three main questions we would like to answer with regard to
exploratory behavior:

1. How can you detect when routine behavior has failed?

2. Once routine behavior has failed, what can you do to explore the space of possible
actions?

3. How can you learn which actions work and which do not -- without requiring
excessive numbers of learning trials?

In this paper, we describe our first efforts at addressing questions one and two.
We describe ways to detect unproductive behavior based on unchanging or oscillatory
sensory input, and ways of exploring new behavior by adding increasing amounts of
randomness to motor outputs. We then compare the performance of agents with and
without these exploratory behaviors.

Detecting Behavioral Stasis

Intuitively, static behavior refers to behavior that is unproductive and unchanging.
More formally, behavioral stasis is a condition of the agent/environment system such
that the agent does not receive any reward and such that the rate of change in the
agent's sensory input is low or zero.

The level of stasis can be represented by an internal state variable that is a function
of the rate of change of an agent's sensory inputs and the reward received. The
normalized rate of sensor change ds/dt is given by the following equation:

_—'— nAt Z]SJ,L‘ S:r—-AII

where 7 is the number of sensors, s,, is the value of sensor 7 at time #, and Az is the

duration of each simulation time step.
The rate of change in the stasis level dovd! is defined by:

ki £<'ts and r=0
‘;—?= kr if —>'cs and r=0
-G if r=0

where o is the current stasis level, 7, is the sensor change threshold, r is the reward
currently being received, and &, and £, are constants.

If the agent is being rewarded, its stasis level is reset to zero. If the agent is not
being rewarded and the normalized rate of sensor change exceeds the threshold, the
stasis level is decreased by £,. Otherwise, the agent's stasis level is increased by k..

Detecting Behavioral Cycles

A behavioral cycle consists of a sequence of agent interactions with the
environment that repeats at regular intervals. From the agent's point-of-view, this
cycle appears as a repeating sequence of sensory input.

A simple way to detect such cycles is to consider the intervals between sensor
events, where an event occurs when a sensor value exceeds a threshold. If the
intervals between such events is constant (or near constant) over a long period of time,
then the agent is likely to be trapped in a behavioral cycle.

A separate threshold exists for each sensor. The threshold value can be computed
by integrating the sensor's input values over a long period of time:

d't,

> =0l (—T; +5:)

)

where <. is the threshold value for sensor 7, s, is the input value of sensor / at the
current time, and o, is a time constant that determines how fast the threshold
responses to changes in sensor input (0 <o, <1). A small value of o, results in a
threshold that changes slowly, while a large value indicates a threshold that changes
rapidly. In general, & should be chosen to be much larger than the expected cycle
interval.

When a sensor value exceeds its threshold, the interval between the current time ¢
and the previous event e, is compared with the interval between the previous event and
the event e, that preceded e,. If these intervals are sufficiently similar, the internal
state variable for measuring the level of cyclic behavior is increased.

In addition, the internal state variable is also constantly decreasing by a small decay
increment regardless of whether an event occurs. So the update rule for the cyclic
level c is:

de _ _ S
df_ k3+k4§(b,

Siar <T; and

b= 1 i 52T and
' (f—e1)—(e1—eo) <w
0 otherwise

where k, is the decay rate, k, is the rate of increase, 7 is the number of sensors, s,
is the value of sensor # at time #, A7 is the interval between simulation time steps, and 7,
is the threshold for sensor i. w is a constant determining the maximum difference in
length between two successive event intervals. Intervals differing in duration by more
than w will not cause an increase in the cyclic level.

Foraging Task
Environment

We have applied these ideas to an autonomous agent that forages for food in a
(simulated) environment containing barriers. Food patches in this environment emit
chemicals that can be detected by sensors on the agent's body. The barriers in the
environment prevent motion, but are permeable to chemicals. The agent's task is to
find all of the food, maneuvering around barriers as necessary. Figure 2 depicts the
environment for the foraging task. The small circle is the agent -- the short line in the
circle indicates the direction that the agent is facing. The large black circles are food
patches, and the black lines are the barriers.

Static and Cyclic Behavior in Foraging

This task and environment were selected because a simple reactive strategy using
chemotaxis is capable of generating both static and cyclic behavior. Chemotaxis refers
to a behavior found in animals where the organism orients toward and moves in the
direction of the chemical gradient. Using two sensors -—- one on either side of the

tey

agent's body -- this can be accomplished by turning in the direction of the stronger
chemical concentration and moving forward.

While this strategy can usually lead an agent to food, it can fail when barriers are
introduced into the environment. Suppose the agent is separated from a food patch by
a barrier. Since barriers are permeable to chemical signals, the agent will orient toward
the food, move forward until it hits the barrier, and continue attempting to move
forward forever. (An explicit sensor could have been added to detect barrier contacts,
but our interest was on how to escape static behavior when such sensors are
unavailable.)

Second, since the agent has a limited turn rate, and thus a non-zero turn radius, it
can become trapped in loops around food patches, where it is constantly turning
toward the food and constantly missing.

Neural Circuit Model

The agent is controlled by a dynamical neural network interfaced to a stasis
detector and a cycle detector. The state equation for neuron 7 is:

i
av; _ —vi+ 2 wif(v) +1i
dr ~ T;

where v, is the voltage of neuron 7, w,, is the weight of the link connecting neuron j
to neuron 7, /, is the current injected into neuron i from external sources (i.e. sensors),
T, is the time constant of neuron , and #{¥,) is the firing rate of neuron i.

Each neuron has a linear threshold firing function: -
0 V:; <T;
ﬂvf)z Vi—T; TiSv;<T;+1
1 vi>Ti+1

where T, is the firing threshold of neuron 7.
Sensor Model

The strength of the chemical signal from a food patch is proportional to the size of
the patch, and drops off as the inverse square of the distance from the center of the
patch. The strength of the signal received by the agent's sensors is equal to the sum of
the signals from all of the food patches.

L Pi L Pi
)=
(i —x1)* + (i —y1)* i —xr)? + (i - yr)?

C) =

where ¢, and ¢, are the inputs to the right and left chemosensors (RCS and LCS in
Figure 2), p, is the size of food patch 7, (x,, ¥) is the location of the right sensor, (x,)
1s the location of the left sensor, and (x, y,) is the location of food patch 7.

Stasis/Cycle Detector

——— Excitatory Synapse
———o [Inhibitory Synapse
—— o Gated Synapse

Figure 1: Neural Circuit

In addition, the agent has a taste sensor (TS) that detects when it is feeding. The
agent feeds whenever it is in contact with a food patch. This sensor is set to 1 if the
agent is feeding, O otherwise.

Locomotion Model

The agent's motion is controlled by two motor neurons (LM and RM) whose
outputs control two motor effectors -- simulating wheels located on either side of the
agent's body The agent's velocity is the average of the two effector values, simulating
inertialess motion on a high-friction surface:

_ m,-i-m,-)
v—k\,(—-2

where v is the agent's velocity, 7, and m, are the left and right motor neuron firing
rates, and &_1s a constant.

The agent's change in heading is proportional to the difference between the left and
right motor neuron firing rates:

CIB — =
i = ko(n2; —m;)

where 6 is the agent's heading and £, is a constant.

kY

Chemetaxis Circuit

Since the two chemical sensors are physically separated, the difference between the
chemical signals can be used to determine the food gradient. The left interneuron (LI)
is excited by the RCS and inhibited by the LCS, so it is active only when the
concentration of the chemical is stronger on the agent's right side. Similarly, the right
interneuron (RI) is excited by the LCS and inhibited by the RCS, so it is active only the
chemical concentration is stronger on the agent's left side.

The LI excites the left motor neuron (LM) and the RI excites the right motor
neuron (RM). So, when the chemical is stronger on the agent's left side, the agent
turns left, and when the chemical is stronger on the agent's right side, the agent turns
right.

The taste sensor (TS) inhibits both motor neurons, and the synapse between the
touch sensor and the motor neurons has a stronger weight than those between the
chemical sensors and the motor neurons. So, when the agent makes contact with a
food patch, it stops moving and starts eating. It will continue eating until the food
patch has diminished to the point where it is no longer in contact with the agent. Then
it will follow the chemical gradient until it makes contact again.

Exploratory Foraging Behavior

Stasis/Cycle Detector

The left and right integrator neurons (LSI and RSI) integrate the output from the
sensory neurons over time. These neurons filter out transient variations in the sensory
input, to prevent interference with stasis/cycle detection.

The stasis/cycle detector applies the equations described above to the input from
LSI, RSL, and TS to update the state variables for the stasis level and cyclic level.
Both of these variables are initially zero.

Gated Random Current Injection

Random bursts of current are constantly injected into the left and right motor
integrator neurons (LMI and RMI). These neurons integrate these bursts over time,
allowing large differences in activation to build up slowly.

The synapses between the motor integrator neurons and the motor neurons (LM
and RM) are gated by an exponential function of the sum of the current stasis and
cyclic levels.

WianC™ C<Ts
_ A
W= c—1
]. e Tg‘

where w is the weight of the synapse, w,___ is the maximum synapse weight, o is the
stasis level, ¢ is the cyclic level, 7 is the stasis threshold, and A is a constant.

The strength of this synapse increases exponentially with the cyclic level and with
the stasis level once it has exceeded a minimum threshold. The parameter A controls
the steepness of this increase.

116

Figure 2: Foraging Environment

Figure 3: Reactive Agent Path

Figure 4: Agent Path
(Random Motor Noise)

Figure 5: Agent Path
(Stasis/Cycle Detection)

So, when static or cyclic behavior is initially detected, only small variations will be
induced in the motor outputs of the chemotaxis network. As the stasis and cyclic
levels increase, the amount of random injection will increase. This allows the
stasis/cycle detector to use the minimum amount of randomness necessary to escape
static and cyclic behavior, while still allowing it to almost completely override the
reactive network, if necessary.

Experimental Results

A purely reactive strategy, using only the chemotaxis network, was never able to
find all four patches. Figure 3 depicts a typical run using the reactive strategy. The
agent starts in the central upper section of the environment and follows the chemical
gradient to consume the two food patches in the upper left region. Then the agent
tries to follow the gradient toward the food in the lower section, but its motion is

(REAS

blocked by the barrier. The agent remains stuck, trying to move through the barrier,
for the remainder of the run.

Finding All | Average Time | Std Deviation
Random 100 25,868 12,999
Stasis 90 15,074 9,476
Stasis+Noise 100 18,505 13,869
Stasis+Cyclic 100 15,438 8,587

Table 1: Foraging Time

Table 1 summarizes the results from four sets of experimental trials. Each set
consisted of 100 runs with the agent starting in a random orientation at a random
location in the environment. The average time is the time required to find and
consume all four food patches. All time measurements are in simulation time steps.

In all four sets of experiments, there was a large amount of variation in the
individual time required for a given experimental run. This is due to the random nature
of the exploratory behavior. Nevertheless, the differences between the average times
are significant at the a. = 0.05 (95% confidence) level (assuming approximately normal
distributions), with the exception of the difference between the stasis trials and the
stasistcyclic trials. So, despite the large variance in individual times, the results
indicate real differences in the average efficiency of these strategies.

In the first set of trials, no stasis or cycle detection was used. Instead, random
noise was added to the motor neurons. At each time step, a random amount of current
(-1.0 to +1 0) was injected into each of the motor integration neurons (LMI and RMI).
A sample run is shown in figure 4. The agent requires a substantial amount of time to
complete the run, because the large random injection makes it insensitive to low levels
of chemical concentration, and thus requires a large amount of random search.
However, the agent eventually finds all of the food.

In the second set of trials, stasis detection alone was added to the chemotaxis
network In these experiments, the agent was able to find all four patches quickly in
90 out of 100 tnals The time required was substantially less for the agent that used
stasis detection than for the agent that used random noise. However, in 10 of the
stasis detection trials, the agent was trapped in cyclic behavior - looping around a
food patch, trying to turn toward the center, but limited by the agent's minimum turn
radius. This behavior continued until the maximum time limit (one million time steps)
was exceeded.

In the third set of trials, small amounts of random motor noise (-0.05 to +0.05)
were added to stasis detection and chemotaxis. ~Less noise was required than in the
first set of trals. In the first set, sufficient noise was required to offset the strong
chemical gradient compelling the agent to move across the barrier. In the third set,
only a small amount of noise was required to disrupt the looping behavior. In this set,
the agent was successful in all 100 trials.

In the fourth set of trials, both stasis and cycle detection were added to the
chemotaxis network (without motor noise). This agent was able to find all food
patches in all 100 trials, and it had the fastest average time of the agents that were
100% successful.

A sample run using stasis and cycle detection is displayed in figure 5. The agent
starts in the upper portion of the environment, near to the left wall. It reactively
follows the chemical gradient to consume the two food patches in the upper left
region, then it tries to move down toward the food in the lower portion of the screen.

The agent's motion is blocked by the barrier, but the agent detects that it is trapped
in static behavior, so it injects slowly increasing amounts of random current into its
motor neurons. This triggers a random search behavior which eventually leads the
agent to the upper right region. When its sensors detect the increase in chemical
concentration, the random injection is decreased, and the agent follows the gradient to
the two upper right food patches.

The agent then tries to move down again, toward the remaining food patches in the
lower haif of the environment. Again its motion is blocked, stasis is detected, and
random search begins. Eventually, the agent wanders through the gap in the barrier
into the lower region. Upon detecting the increase in chemical concentration, the
reactive behavior takes control again, and the agent follows the gradient to consume
the remaining food.

Related Work

Our research has the goal of building agents that can react adaptively to
unpredictable situations. This is a goal shared by many of the research projects related
to learning and evolution in autonomous agents.

Many of these projects have involved the use of reinforcement learning in agents
whose control systems are decomposed on a behavioral basis. Maes has used
reinforcement learning to coordinate multiple behaviors for legged locomotion [Maes
90] and to learn to control the interactions between multiple behavioral modules [Maes
91]. Mahadevan and Connell have used reinforcement learning to learn the behaviors
involved in a box-pushing task [Mahadevan 90]. Kaelbling has used reinforcement
learning to learn obstacle avoidance and phototaxis without an explicit decomposition
into separate behaviors [Kaelbling 91].

In addition, Nehmzow and Smithers have used behavioral task decomposition in
combination with perceptrons and Kohonen networks to learn a number of mobile
robot behaviors, including obstacle avoidance, wall-following, and location recognition
[Nehmzow 91].

Our research is also related to the work being done by Beer and Gallagher on
using genetic algorithms to evolve dynamical neural networks for controlling
autonomous agents [Beer 92]. In particular, our work relates to the questions of how
these networks can generate behavior that can adapt to a wide variety of environments,
and issues related to the role of agent internal state in learning and adaptation.

However, our research differs from all of these in that its primary focus is not on
how to initially acquire behavioral capabilities -- whether through design, learning, or
evolution -- but on how to deal with the situations that arise when these behaviors fail.

Conclusions
These experiments have shown that it is possible to use the algorithms described to

detect simple forms of static and cyclic behavior in an agent controlled by a dynamical
neural nmetwork and operating in a continuous, changing environment. These

L168

experiments also showed that it was possible to escape static and cyclic behavior
through the injection of random motor current, and that the agent could operate more
effectively when this random current was modulated by the level of detected static or
cyclic behavior.

Constant injections of random motor current allowed the agent to escape static and
cyclic behavior, but at the cost of constant interference with chemotaxis and
substantially reduced foraging performance. In contrast, gated random injections
allowed the agent to forage without interference under normal circumstances and also
to escape static and cyclic behavior when either occurred. This resulted in the ability
to deal with situations that the purely reactive chemotaxis agent was unable to handle,
while incurring a very small performance cost in those situations that could be handled
reactively.

Aclknowledgments

We would like to thank the other members of the CWRU Autonomous Agents
Group, Leslie Picardo, John Gallagher, and Alan Calvitti, who have provided helpful
comments on this research.

References

Beer, Randall and Gallagher, John 1992. "Evolving Dynamical Neural Networks for
Adaptive Behavior", Adaptive Behavior, Vol. 1, No. 1, Summer 1992,

Kaelbling, Leslie 1991. "An Adaptable Mobile Robot", Towards a Practice of
Autonomous Systems: Proceedings of the First European Conference on
Artificial Life, Francisco Varela and Paul Bourgine, ed., Cambridge, MA: MIT
Press.

Maes, Pattie and Brooks, Rodney 1990. "Learning to Coordinate Behaviors",
Proceedings of AAAI-90.

Maes, Pattie 1991. "Learning Behavior Networks from Experience", Towards a
Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, Francisco Varela and Paul Bourgine, ed.,
Cambridge, MA: MIT Press.

Mahadevan, Sridhar and Connell, Jonathan 1990. "Automatic Programming of
Behavior-Based Robots Using Reinforcement Learning”, Research Report RC
16359, IBM T. J. Watson Research Center, Yorktown Heights: NY.

Nehmzow, Ulrich and Smithers, Tim 1991. "Using Motor Actions for Location
Recognition", Towards a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life, Francisco Varela and Paul
Bourgine, ed., Cambridge, MA: MIT Press.

(169 |

