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Abstract

Recent work in unravelling the global dynamics of discrete dynamical systems
such as cellular automata (Wuensche and Lesser, 1992), and more generally, of
random Boolean networks (Wuensche, 1992), allow their basins of attraction to
be explicitly portrayed. These are diagrams that connect up the network's
global states according to their transitions - typically, the topology is branching
trees rooted on attractor cycles. The diagrams are efficiently constructed with
an algorithm that directly computes a state's set of pre-images (if any).

I argue that the basin of attraction field constitutes the network's memory;
but net simply because separate attractors categorising state space - in
addition, within each basin, sub-categories of state space are categorised
hierarchically along transient trees far from equilibrium, creating what is
effectively a complex hierarchy of content addressable memory. This may solve
a basic difficulty in explaining memory by attractors in biological networks
where transient lengths are probably astronomical.

I describe a single step learning algorithm for re-assigning pre-images in
random Boolean networks. This allows the sculpting of their basin of attraction
fields to approach any desired configuration. The process of learning and its
side effects are made visible. In the context of many semi-autonomous weakly
coupled networks, the basin field/network relationship may provide a fruitful
metaphor for the mind/brain.

Introduction

Hopfield described a neural network model (Hopfield, 1982) with emergent collective
properties that spontaneously give tise to a categorizer or content-addressable
delocalised memory. The model is a discrete dynamical system; memories are simply
separate regions of state space flowing to stable states or energy minima. He also found
unwelcome simple cycles and chaotic wanderings in small regions. Changes to memory
are made by modifying system parameters to alter regions or create new minima. In
continuous deterministic dynamical systems this is analogous to the vector field - the field
of flow imposed on phase space by the systems dynamics described by its phase portrait.
A set of attractors, be they fixed point, limit cycles or chaotic, attract various regions of
phase space in the basin of attraction field.

Analogous concepts apply to discrete dynamical systems such as cellular automata,
and the more general case, random Boolean networks, which update synchronously and
are deterministic in the absence of noise or changes to parameters. An important
difference, however, is that transients can merge onto one successor state far from
equilibrium in these discrete systems, whereas in continuous systems they cannot.
Neither does Hopfield's model support deterministically merging transients because

i{So




I

;{‘q?%&‘ 2
RGN
7 Vﬁ\

7
e
{\
/,;z-;%;\

/1

transient
tree

1

transient
sub-tree

Figure 1
A basin of attraction of a random Boolean network Table 1
(N=13, K=3). The basin links 604 states, of which 523 cell wiring rule,-table

3,12,6 86, 01010110
71,4 4, 00000100
3,3,1 196, 11000100
13,3,9 52, 00110100
8,75 234, 11101010
1,81 100, 01100100
12,4,13 6, 00000110
86,2 100 01100100
92,6 6, 00000110
10 5,1,1 94, 01011110

. & 2 11 2,71 74, 01001010
the updating is randomty asynchronous. It is open to debate 12 7,84 214, 11010110

whether synchronous or asynchronous updating in a local 13347 168, 10111300
network is more or less biologically plausible. However,
synchronous random Boolean networks may have greater potential as content-
addressable memory systems because not only attractors categorise state space. State
space is also categorised by a reliable time-sequence of umique states along each
transient tree far from equilibrium, creating what is effectively a complex hierarchy of
content addressable memory.

The range of topologies of basins of attraction, and the potential for emergent
complex categorisation of network states, suggests that the basin of attraction field, a
mathematical object in space-time, is the network's cognitive substrate - the ghost in
the machine (Wuensche, 1992). A basic difficulty in explaining memory by attractors
in biological networks has been the probably astronomical transient lengths needed to

are garden of Eden states. The attractor has period 7.
The direction of time is inwards from garden of Eden
states to the attractor, then clock-wise. The basin is one
of 13, and is indicated in the basin of atiraction field in
figure 2. Table 1 gives the random Boolean network
wiring/rule parameters. Wiring and rules were assigned
at random, except that the neighbourhood 000 — 0.
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the basin in figure 1

Figure 2.

The basin of attraction field a random Boolean network (N=13, K=3). The 213=8192

states in stale space are organised into 15 basins, with attractor period ranging from 1
to 7. The number of states in each basin is: 68, 984, 784, 1300, 264, 76, 316, 120, 64,
120, 256, 2724, 604, 84, 428. The arrowed basin is shown in more detail in figure 1,
and the network’s wiring/rule scheme in table 1.

reach an attractor in large networks, whereas reaction times in biology are extremely fast.
The answer may lic in the notion of memory far from equilibrium along merging
transients.

Basins of attraction of random Boolean networks have been investigated for a
considerable time, notably by Stuart Kauffman in theoretical biology and complex
systems (Kauffman, 1984, 1989). These studies have built statistical data on basin fields
from many scparate forward simulations. Recently, explicit portraits of basin of
attraction fields for cellular automata have been made accessible in (Wuensche and
Lesser, 1992), and for random Boolean networks in (Wuensche, 1992). This is achieved
by reverse algorithms, running the system backwards to directly compute a given state's
set of pre-images (if anmy). The diagrams of basins of atiraction make content-
addressable (quio-associative) memory visible. This may help to clarify the process of
memory and leaming in a variety of neural network architectures, as well as random
Boolean networks. Two levels of leaming may be distinguished. Where a network's
architecture remains unchanged, its dynamics may be shifted from one basin of attraction
to another by interacting with other networks or external inputs. More radically, learning
(and forgetting) involves adjusting the network's parameters (its wiring/rule scheme and
size/conductivity) to achieve a more appropriate basin of attraction field.
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In this paper I describe random Boolean network architecture, basins of attraction,
and learning algorithms that automaticalty re-assign pre-images in a single step. New
atiractors can be created and transient trees and sub-trees transplanted, sculpting the
basin of attraction field. The effects, (and side effects) of learning become immediately
apparent if the basin of attraction field, or some fragment of it, can be drawn. This paper
gives some examples.

Cellular Automata and Random Boolean Networks

Cellular automata architecture requires a homogeneous neighbourhood template and rule
at every cell. The "laws of physics" of the regular cellular space must be the same
everywhere. Random Boolean networks may be viewed as generalised (disordered)
cellular automata, breaking these two basic premises by allowing arbitrary wiring and/or
rules at each cell. The effect on behaviour of deviating from either or both of these
premises by degrees was investigates in (Wuensche, 1992). Not surprisingly, space
dependent emergent complex structures such as gliders and coherent space-time
patterns, characteristic of cellular automata, are progressively degraded. A relatively smalt
number of basing with low period attractors typically emerge.

Random Boolean networks have a vastly greater parameter space, and thus behaviour
space, than cellular automata. Various symmetries and hierarchies in cellular automata
dynamics, such as shift invariance and the conservation of rotational symmetry
(Wuensche and Lesser, 1992) no longer apply. It might be conjectured that any basin of
attraction configuration is possible.

Random Boolean Network Architecture

{OOO QOOO0O0000 network at time ¢

/ time
| @ wiring scheme
\

" pseudo neighbourhood
OOOOOOUOOOOO0O0 network at time £+1

Figure 3. Each cell in the network synchronously updates its value according to the
vaiues in a pseudo neighbourhood, set by single wire couplings to arbitrarily located
cells at the previous time-step. Each cell may f

system is iterated.

ave a different wiring/rule scheme. The
Random Boolean networks, as the name implies, allow network elements to take on one
of two possible attributes (the cell's value, say 0 or 1), but in principle the arguments in
this paper could equally apply to a network where cells have more than two values, A
global state of a network of V cells is the pattern of values assigned to each array cell,
from a finite range of values ¥ (usually ¥=2). Each cell synchronously updates its value
in discrete time steps. The value of a cell at time #+1 depends on its particular cellular
automata rule applied to a notional or pseudo neighbourhood, size K. Values in the
neighbourhood are set according to single wire couplings to arbitrarily located cells in the
network at time £ The system is iterated. The system's parameters are set by specifying
the cellular automata rule and pseudo neighbourhood wiring, which may be different for
each cell. Once set, the system's parameters are fixed over time.
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The Network's Behaviour Space
There are P& permutations of values in a neighbourhood of size K. A rule table (look up
table) with ¥X entries will specify the output of all neighbourhood permutations. By
convention (Wolfram, 1983) the rule table is arranged in descending order of the values
of neighbourhoods. For example, the rule table for rule 30 (F=2, K=3) is,

111 110 101 100 011 010 001 000 ... neighbourhoods
ruletable... 0 0 0 1 1 1 1 0 ...outputs(Oorl)

The total number of distinct rule tables, the size of rule space = V¥%, The number of
alternative wiring schemes for one cell = MK, The number of alternative wiring/rule
schemes, 8, that can be assigned to a given network turns out to be vast even for small

networks, and is given by
N N
S= (NK) X (VVK)

for example, a network where V=2, N=16, k=5, 8= (2)832

Random Boolean network architecture is in many ways similar to weightless neural
networks (Alexander et al, 1984), where standard memories (RAMs) hold each cell's
look-up table. Classical neural network architecture uses weighted connection and
threshold functions. A random Boolean network may be regarded as a discrete
generalisation of a sparsely connected classical neural network. Connections with higher
weights may simply be replaced by multiple couplings, and the threshold function
applied. However, a threshold function is a tiny sub-class of the VK possible cellular
automata rules.

Intermediate architectures between cellular automata and fully random Boolean
networks may be appropriate for particular applications. For instance, notions of space
and boundary conditions may be retained if random wiring is confined within a local
Zone.

Basins of attraction

Cellular automata and random Boolean networks are examples of discrete deterministic
dynamical systems. They evolve along a deterministic #rgjecfory consisting of a
succession of global states that represents one particular path within a basin of atiraction,
familiar from continuous dynamical systems. As the number of global states, ¥, is
finite, any path inevitably leads to a state cycle (the atfracior). The set of all possible
paths leading to the same atfractor, including the attractor itself, makes up the basin of
attraction. This is composed of merging trajectories linked according to their dynamical
relationships, and will typically have a topology of branching trees rooted on the
attractor.

Basins of attraction are portrayed as computer diagrams in the same graphic format as
presented in (Wuensche and Lesser, 1992). Various other names are sometimes used, for
example, flow graphs, state transition graphs, networks of attraction. Global states are
represented by nodes, or by the state's binary or decimal expression at the node position.
Nodes are linked by directed arcs. Each node will have zero or more incoming arcs from
nodes at the previous time-step (pre-images), but because the system is deterministic,
exactly one outgoing arc (one out degree). Nodes with no pre-images have no incoming
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arcs, and represent so called garden of Eden states. The number of incoming arcs is
referred to as the degree of pre-imaging (or in degree). Figure 1 shows a typical basin of
attraction of a random Boolean network (it is part of the basin of attraction field shown in

figure 2).

Computing Pre-Images

Construction of a single basin of attraction poses the problem of finding the complete set
of pre-images of every global state that is linked together in the basin. The trivial
solution, exhaustive testing of the entire state space, becomes intractable in terms of
computer time as the neiwork's size increases beyond modest limits. To overcome this
problem, methods have been invented for computing pre-images directly, without
exhaustive testing, The network's dynamics can, in effect, be run backwards in time;
backward trajectories will, as a rule, diverge. A reverse algorithm that directly computes
pre-images for one-dimensional cellular automata was presented in (Wuensche and
Lesser, 1992), and a general direct reverse algorithm for random Boolean networks
(which includes higher dimensional cellular automata) in (Wuensche, 1992). Providing
that K<N, the average computational performance is the many orders of magnitude
faster than exhaustive testing, making basin portraits for these systems accessible for the
first time.

A biological model

Memory far from equilibrium along merging transients may answer a basic difficulty in
explaining memory by attractors in biological neural networks. A view of the brain as a
complex dynamical system made up of many inter-linked specialised neural networks is
perhaps the most powerful paradigm currently available. Specialised meural networks
may consist of further sub-categories of semi-autonomous networks, and so on, which
contribute to re-setting each other's global state. A biological neural sub-network is
nevertheless likely to be extremely large; as a dynamical system the time required to
reach an attractor from some arbitrary global state will probably be astronomical. Even
when an attractor is reached, it may well turn out to be a long cycle or a quasi-infinite
chaotic attractor. The notion of memory only as attractors seems to be inadequate to
account for the extremely fast reaction time in biology.

A discrete dynamical system with synchronous updating categorises its state space
reliably along transient trees, far from equilibrium, as well as at the attractors. A network
that has evolved or learnt a particular global dynamics may be able to reach memory
categories in a few steps, possibly just one. Moreover, the complex transient tree
topology in the basin of attraction field, makes for a much richer substrate for memory
than attractors alone, allowing hierarchies of memory sub-categories.

There is evidence that the firing of nearby neurons is strictly related in time. Phase
locking of spike discharges between neighbouring cells has been observed, extending up
to 7mm across the cortex (Grey et al, 1989, Singer, 1991, Wasserman, 1992).
Synchronous firing may be mediated by interneurons, which lack axons (Shepherd,
1990), or mechanisms relying on close physical proximity between neurons (their
dendrites, cell bodies and axons). Gap junction effects (physical connections between
neurons made by large macro molecules), and ephaptic interactions (the local electrical
field) serve to synchronise local neuronal activity (McCormick. 1990).

A random Boolean network may serve as a model of a patch of semi-autonomous
biological neurons whose activity is synchronised. A cell's wiring scheme models that
sub-set of neurons connected to a given neuron. Applying the cellular automata rule to a
cell's pseudo neighbourhood models the non-linear computation that a neuron is said to
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apply to these inputs to decide whether or not to fire at the next time-step. This is far
more complex than a threshold function (Shepherd, 1990).The biological computation
may be a function of the topology of the dendritic tree, the microcircuitry of synaptic
placements, inirinsic membrane properties, or properties of the cytoskeleton, said to act
as the neuron's ‘internal nervous system’ (Hameroff et o/, in press). There appears to be
no shortage of biological mechanisms that could perform the role of a cellular automata's
look-up table.

The model may be elaborated by weakly inter-connecting a number of random
Boolean networks (or perhaps 3-state networks) so that they are able to influence each
other. Communication between networks may be asynchronous, and at a slower
frequency than a particular network’s internal synchronous clock. Such an assembly of
networks will have implicit in its particular pattern of connections at any instant, a vastly
more complex but intangible web of interacting basin of attraction fields - the ghost in
the machine ?

Learning Algorithms

Whether or not such a model is biologically plausible, it may be useful in its own right
as an artificial neural network where memory and learning (and its side effects) are made
visible. In networks too large to allow basins, or even fragments of basins, to be
computed, the principles still apply. Separate basins in the basin of attraction field, and
each node onto which dynamical flow converges, categorise state space. All the
network's states other than garden of Eden states are context-addressable memaories. Any
external input will automatically initiate a dynamical flow along a unique chain of states.
Each successive state categorises states in its transient sub-tree, far from equilibrium,
forming a complex hierarchy of categorisation culminating at the atiractor. The set of
attractors and their branching trees constitute the network's collective memory. o

Leamning algorithms, set out more fully in (Wuensche, 1992) enable a random
Boolean network to learn new transitions from experience (and also to forget). Suppose
we want to make the state Py the pre-image of state A. Any mismatches between cell
values of the actual successor state By (of the aspiring pre-image, Py ) and state 4 can
be corrected in one step by either of two methods, adjusting the network's wiring or rule
scheme; the two methods have very different consequences.

pre~images
).,_, pre-images

S -

Figure 4. States Py Py Py, . . . eic may be learnt as pre-images of the state A. Distant
pre-images of A ma? also be learnt, for instance the pre-images of Py. Learning A as
a pre-image of itself creates a point attractor. Learning A as a distant pre-image of
itself creates a cyclic attractor. If A is learnt as the pre-image of some other state in the
basin of attraction field, the states flowing into A, it's transient tree, may be fully or

partially transplanted along with A.
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Figure 5. A sequence of learning steps, A to F, in a 6 cell network. Note the stability of
basin structure as well as the side effects of learning at each step. Bit patterns are

represented by decimal numbers.
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To correct a mismatch by rewiring, one (or more if necessary) of the cell's wiring
couplings is moved to a new position. Any move resulting i a pseudo neighbourhood
with opposite output (according to that cell's look up table) will correct the mismatch.
This is a stochastic method as there may be many alternative successful options. If

another aspiring pre-image, Pj is to be added to A there is a chance that P may be
forgotten.

On the other hand, to correct 2 mismatch in a particular cell by adjusting the rule
scheme, one specific bit in the cell's rule table is flipped - the output of the pseudo
neighbourhood. There is only one option, certain to succeed. Adding another aspiring
pre-image, Py by the same method cannot cause Pj to be forgotten. This is because any
mismatch between a particular cell in the successor state By (of the aspiring pre-image,
Py) and A can not relate to the same rule table entry that was ‘looked up’ to determine
Py's successor. Otherwise there would have been no mismatch. Any change to correct
the mismatch must be to a different rule table entry; Py's successor cannot be affected. It
turns out that there is no limit to the number of pre-images of a given state that can be
learnt by this method, and no risk of forgetting previously leamnt pre-images of the state,
but of course there will be side effects elsewhere in the basin field.

Re-wiring appears to have a greater effect on basin structure than mutating the rule
scheme, but in either case the stability of basin structure is noteworthy. As illustrated in
figure 4, using these methods, point attractors, cyclic attractors and transient sub-trees
can be can be created. Transient sub-trees are sometimes transplanted along with the
repositioned state. Generalisation is present, because bit patterns in the same pre-image
fan are likely to be close in Hamming distance from each other, and so may be leamt by
default from examples.

Figure 5 shows an arbitrary example (with no particular aim) of visible learning (and
side effects) in a 6 cell network with regular wiring but randomly allocated rules. At each
learning step, a state (or set of states) is made the pre-image of a target state. Fig 6 shows
the basin of attraction field of a 6 cell network that has been taught to segregate strings
with odd and even parity into two separate basins.

Combining wiring and rule scheme adjustments, may result in a powerful method of
cumulative learning (supervised and unsupervised) in random Boolean networks. In
future work I anticipate using genetic algorithms to improve the start parameters of
networks prior to learning, to extend the learning methods to include system size and
connectivity, and to investigate assemblies of weakly coupled semi-autonomous
networks.

Fiﬁure 6. The basin of attraction field of a 5 7
cell parity sorting network. The first basin g

has only even parity states, the Second has \1
odd parity states. Both basins have point

attractors. Bit patterns are represented by

decimal numbers.

N




Acknowledgements

I am grateful to colleagues at the Santa Fe Institute and the University of Sussex for
discussions and comments.

References

Alexander,I., W.Thomas and P.Bowden, WISARD, a radical new step forward in image
recognition, Sensor Review (1984) 120-4.
Grey.C.M, P.Konig, A.K.Engel, W.Singer, Oscillatory responses in cat visual cortex

exhibit inter-columnar synchronization which reflects global stimulus properties.
Nature 1989, 338:334-337.

Hameroff, S.R., J.E.Dayhoff, R.Lahoz-Beltra, S.Rasmussen, E.M.Insinna and D.
Koruga, Nanoneurology and the Cytoskeleton: Quanium Signaling and Protein
Conformational Dynamics as Cognitive Substrate, in Behavioral Neurodynamics,
K.Pribram and H Szu, eds., Pergamon Press, in press.

Hopfield,J.J., Neural networks and physical systems with emergent collective

computational abilities, Proceedings of the National Academy of Sciences 79
(1982) 2554-2558.

Kauffman,S.A., Emergent properties in random complex systems, Phisica D, vol 10D
(1984), 146-156.

Kauffman,S.A., Requirements of evolvability in complex systems; Orderly dynamics
and frozen components, in Complexity, Entropy and the physics of information, ed.
W.H.Zurek. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings
Vol.VIII, Addison-Wesley,1989, 151-192.

McCormick, D.A., Membrane Properties and Neurotransmitter actions, in The
Synaptic Organization of the Brain, 3rd edition, Oxford University Press, 1990,
32-66.

Shepherd, G.M., ed, The Synaptic Organization of the Brain, 3rd edition, Oxford
University Press, 1990.

Singer,W., Response synchronization of cortical neurons: An epiphenomenon or a
solution to the binding problem? IBRO news 1991, 19:6-7.

Wolfram,S., Statistical Mechanics of cellular automata, Review of Modern Physics, vol
55, no 3 (1983) 601-64.

Wuensche, A., and M.J.Lesser. The Global Dynamics of Cellular Automata; An Atlas
of Basin of Attraction Fields of One-Dimensional Cellular Automata, (diskette

included), Santa Fe Institute Studies in the Sciences of Complexity, Reference
Vol.L, Addison-Wesley, 1992.

Wuensche,A., The Ghost in the Machine; Basin of Attraction Fields of Disordered
Cellular Automata Networks, Santa Fe Institute Working Paper 92-04- 017,

1992, to be published in the proceedings of Artificial Life I7I, Santa Fe Institute
Studies in the Sciences of Complexity.

1 159




