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ABSTRACT

This paper reports an investigation of the relationship between learning
and evolution in populations of backprop networks. The simulation
environment, which has been used previously by Parisi, Nolfi and
Cecconi (Parisi, Nolfi and Cecconi, 1991), consists of a two
dimensional grid with a random sample of the vertices containing a
reward for those animats that visit them. Each animat is a small
backprop neural network with a limited lifetime. Initial weights are
chosen using a genetic algorithm. Depending on the experiment, these
weights may or may not be modified by backpropagation during the
animats' lifetimes in response to their performance in the environment.
We find no evidence that learning during animats' lifetimes has any
beneficial effect on evolution for this particular task. We find that the
task is learned more successfully by simple perceptrons than by multi-
layer networks, which suggests that it is linearly separable. Finally, we
offer an alternative, more simple, explanation for the phenomena
observed by Parisi, Nolfi and Cecconi and originally explained by those
authors in terms of behavioural self-selection of stimuli.




INTRODUCTION

Parisi, Nolfi and Cecconi recently reported a study of the relationship between learning,
behaviour and evolution in a simple two dimensional world populated by animats.
Animats consist of small feedforward neural networks which perform a simple food
gathering task. Over time, new animats are generated from the more successful
members of the animat population using a genetic algorithm, or GA (Holland, 1975;
Goldberg, 1989). Parisi, Nolfi and Cecconi found that: "Learning can accelerate the
evolutionary process both (1) when learning tasks correlate with the fitness criterion,
and (2) when random learning tasks are used. Furthermore, an ability to learn a task
can emerge and be transmitted evolutionarily for both correlated and uncorrelated
tasks.”

It is not obvious why the above statement should hold for very simple artificial
neural networks operating in simple problem domains such as the one described.
Indeed, if true, it would have major consequences for the design of artificial neural
networks for practical applications since it would imply that a network trained on one
task should have useful performance even on other uncorrelated tasks. We therefore
decided to carry out a more extensive study of this artificial world.

ANIMATS AND THEIR WORLDS

Following Parisi, Nolfi and Cecconi, each animat lives in a separate two dimensional
environment containing randomly placed pieces of "food". Initially, both the food
items and the animat are randomly located in cells within a 10x10 grid. During its
lifetime an animat moves around its world, sometimes landing on a food cell and eating
the food. Ultimately, those individuals that are most successful at finding food are
more likely to reproduce and their offspring will become increasingly successful at this
food gathering task: the fat cats will get fatter.

An animat consists of a feedforward neural network! that receives sensory input
from the environment, in this case the angle and distance to the nearest cell that contains
food, and generates an output action which results in the animat either moving forward
by one cell, turning left or right through 90 degrees, or staying still. The neural
network architecture, which does not change during an experiment, is shown in figure
1. It has four input units and two output units, fully connected to seven hidden units.
Two of the four input units receive the angle and distance to the closest food cell, and
the remaining two receive the output values from the network for the most recent
action. The output units are thresholded to produce an action choice coded as two
binary digits: 00 = halt; 01 = turn right; 10 = turn left; 11 = advance.

In any single experiment, all animats have the same network architecture and
neuron functions; they differ only by having different sets of weight values. Initially,
these weight values are chosen randomly, but a genetic algorithm is used subsequently
to generale new animats.

Each animat's weight values are coded as a chromosome of floating point
numbers. Initially, a population of 100 animats is created, each with a random set of
connection weights. Each individual is then allowed to live for 20 lives (a life
consisting of 50 actions from a random starting point) in 5 different environments (i.e.
food placings). All animats are then assessed and the 20 individuals which have eaten
the most food are selected as the basis for the next generation. Each of these individuals
is reproduced 5 times, and each offspring is subjected to mutation by perturbing 5
weights, selected at random, by a random real value between *1.0, to produce a
population of 100 new animats. This process of evaluation, selection, reproduction

1 Artificial neural networks are parallel, distributed machine learning architectures originally inspired
by, and are loosely based on, biological neural systems. The reader unfamiliar with neural networks is
referred to Rummelhart and McClelland (1986).
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and mutation represents one generation, and the original experiments were carried out
for 50 generations. In the current experiments, runs consisted of 70 generations since
it was not clear that a plateau of performance had been reached with fewer generations.

Most Recent Action ~ Sensory Inputs

Hidden Units

Next Action

Figure 1. Animat Network

The animats of the first generation exhibit purely random behaviour; because
their network weights are random they only consume food by chance. However, by
selecting those individuals that have consumed the most food, and introducing slight
mutations into the reproduction of selected individuals as described above, the
population evolves and individuals in successive generations become more effective at
finding food as useful sets of network weights are discovered.

Tn a second set of experiments, individuals are also allowed to learn during their
lifetimes, by adapting their weights using the standard backpropagation method
(Rumelhart, Hinton and Williams, 1986). This introduces an interesting possibility.
The evolutionary adaptation is purely Darwinian since it is the initial weights at the
beginning of an individual's life that are encoded on the chromosome. No
modifications made to these weights during the lifetime of an individual are passed on
to the next generation directly. However, learning may increase the chance of an
individual being selected if 1t improves its ability to find food. In this second
experiment what evolves is not necessarily just the ability to seek food efficiently; it
may also be the ability to learn effectively during life.

In order to use backpropagation to train any network, an error signal on the
output units at each time step is needed. However, for this task there is a temporal
credit assignment problem since the payoff for finding food may occur many steps after
any given move. To avoid this problem, Parisi, Nolfi and Cecconi provide an error
signal from what they consider to be a related task: predicting the sensory consequences
of the animat's most recent action. Two new output units are added to the network (see
figure 2) and these units are used to predict what the sensory input will be on the
succeeding move. The error signal is the difference between this prediction and the
actual sensory input after the move is made. In this way it is possible to generate an
error signal at each timestep which can be backpropagated through the network,
modifying all weights except those between the hidden units and the two original
(action) output units.
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Figure 2. Animat network with predictive outputs

EXPERIMENTAL DETAILS

The experiments reported here follow those of Parisi, Nolfi and Cecconi

wherever they gave explicit details. We have made the following choices where details
were not given:

The ‘angle to the closest food cell' input is measured clockwise relative to the
animat's current facing direction, and normalised so that food directly in front of the
animat always has an angle of 0.0, food directly to the right an angle of 0.25, and
SO on.

If the closest food cell is equidistant to one or more other food cells, then the one at
the greatest angle is chosen to be detected by the animat.

The distance input is normalised such that the diagonal distance across the 10x10
starting grid is approximately 1.0.

The starting weights for the animats of generation 0 are random floating point
numbers in the range *1.0.

In the experiments involving backprop, the original Rumelhart, Hinton and
Williams algorithm was used with no momentum term, weight decay, or other
convergence improvement strategy. A learning rate of 0.6 was chosen for all the
Tuns reported here.

At the start of each experimental run, 5 separate worlds with different, random food
distributions were created. These worlds remained fixed for the duration of that
experiment. In each generation, the animats were each allowed 20 lives of 50
moves in all 5 worlds. At the beginning of each life the world was restored to its
initial state (i.e. any food eaten previously is replaced in the cell which had
contained it) and the animat was placed in a randomly selected empty cell.
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RESULTS

All experiments were repeated 16 times with different random weight starts and
different worlds in order to obtain statistically meaningful results. All the figures in this
section show average results over the 16 runs.

In addition to the evolutionary experiments already described, two benchmark
runs were performed in which the animats' foraging strategy was hard-coded. In the
first of these, the animat simply made a random action choice at each time step. Tested
for 20 lives in each of 500 randomly generated worlds, this animat consumed an
average of 0.63 food cells in each one. The second benchmark strategy was designed
to represent an effective foraging behaviour, and consisted of the following rules. If
the nearest food lies within a 40° arc in front of the animat, the chosen action is to
advance. If the food lies outside this arc and to the animat's left, the animat turns to the
left. Similarly, if the food is outside the arc and to the animat's right, the animat turns
to the right. If the food is directly behind the animat, it turns right by default. An
animat employing this strategy, tested for 20 lives in each of 500 worlds, consumed an
average of 9.74 food cells in each one. Note that this is lower than the theoretical
maximum of 10 foods consumed per life. One reason for this is that an animat's
limited sensory information prevents it from planning any kind of optimal tour around
the food cells - going directly towards each nearest food cell in turn (as per the well
known greedy algorithm for the Travelling Salesman Problem) will result in a less than
optimal tour.

Figure 3 shows the mean performance over the populaton, together with the
performance of the most fit individual (peak), as a function of generation, where no
learning takes place during the animats' lifetimes. The performance measure is the
average number of food items eaten in a lifetime. The peak performance appears to be
close to a plateau at around 8.8 food cells consumed. Note that the performance of
networks generated after even a small number of generations is much better than the
random walk benchmark.
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Figure 3. Animat performance with no modification of network weights during lifetime

The effect of allowing the animats to learn during their lifetime can be seen in
figure 4, which shows the population mean and fittest individual performance as a
function of generation.
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Figure 4. Animat performance with predictive learning during lifetime

Figure 5 compares the performance with and without learning for both the peak
individual (fig. 5(a)) and the population mean (fig. 5(b)). Representative error bars
(one standard deviation) are shown only at some generations in order to avoid cluttering
the picture. In both cases there is no significant benefit resulting from learning during
life; if anything, learning appears to be a handicap rather than a benefit. This is in stark
contrast to the results obtained by Parisi, Nolfi and Cecconi, who observed a
significant increase in performance when learning was included. We are unable to
explain this difference, but in view of the large number of experiments which we have
performed, we think it unlikely that further experiments would reverse our conclusions.
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Figure 5. Comparison of (a) peak and (b) mean performance with and without
predictive learning

Should we expect to see an increase in food-gathering performance as a result of
incorporating predictive learning during the animats' lives? It is useful to consider the
'adaptive landscape' around a point in weight space (i.e. a possible animat). A point
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may be considered to have a good surrounding landscape if most of its adjacent points
are higher (fitter) than it is, that is to say a small movement (mutation) is likely to lead
to an improvement in fimess. Parisi, Nolfi and Cecconi suggest that, as the predictive
task seems correlated to the food-gathering task, then learning to predict constitutes a
Jocal exploration in weight-space, biasing selection between points of similar fitness in
favour of the one with the better surrounding landscape. This causes learning to guide
the evolutionary process away from local optima. This has been called the Baldwin
effect (Baldwin, 1896), and a similar process has been reported by Hinton and Nowlan
(1987).

Let us consider the learning task itself. The network attempts to map the
relationship between ‘action’ and ‘resultant change in sensory input’. In a world with
only one food cell, this would not seem a particularly difficult relationship to grasp - the
change in angle and distance to the food is a simple and consistent function of
movement. However, in an environment with many food cells, the mapping may
become complex and inconsistent, as the sensory inputs only ever refer to the single
closest food cell. A step which results in a new food cell becoming the closest will
result in a totally unpredictable (from the animat’s point of view) change in sensory
input. During the early stages of evolution, when the animats' movements are largely
random, such steps will occur frequently as the animat moves. This effect is reduced
as behaviour evolves to allow efficient movement towards closest food cells, but the
same situation will always occur every time a food cell is found and consumed. This
inherent noise in the training data for the predictive task casts doubt over how much
useful predictive learning the animat might be able to acquire during its life.

Given the simple nature of the original task, our results (eg. fig. 5(a)) suggest
that this increased complexity may actually add an unnecessary layer of abstraction
between the GA and the actual task being optimised, disrupting the search space and
actually hindering the search, as the GA by itself (see figure 3) seems powerful enough
to find near-optimal weight sets in a relatively small number of generations.

Parisi, Nolfi and Cecconi performed a further experiment in which the animats’
networks were trained on an arbitrary task (the XOR problem) while undergoing
evolution, as before, on the basis of their food gathering ability. They report that
performance, even on this task, becomes related to fitness for animats which are trained
on the task during their lives. They suggest that the learning is biasing evolution
towards selecting points from regions of weight space in which the performance
surfaces for the two tasks (XOR and food gathering) are similar, so that an ascent on
one surface would imply an ascent on the other.

For such regions of the space to exist, if the two tasks really are uncorrelated, the
number of free parameters in the network must be large enough for the network to
encapsulate both learning tasks at the same time. A network has a finite capacity for
storing information; by definition, if a network consists of a minimum set of weights
adapted for one task, then further training of these weights for another, uncorrelated
task, can only decrease performance in the original task. Learning the XOR problem
during the animat's lifetime only guides the evolution of food gathering ability in as
much as it forces the GA to find networks which are not only good networks for food
gathering, but are also tolerant of those weight changes caused by training on XOR.
This tolerance may only be possible if the network architecture contains excess free
parameters.

This led us to investigate whether the animats' network architecture did indeed
contain more parameters than are required for the food gathering task. We performed a
set of experiments in which we removed the hidden layer altogether from the animats'
networks. Figure 6 compares the performance of animats with no network hidden
layer with those with the original architecture of seven hidden units. Figure 6(a)
compares the performance of the most fit individuals, and figure 6(b) the performance
of the population means, as a function of generation. In this experiment no learning
takes place during the animats' lifetimes.
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Figure 6. Comparison of (a) peak and (b) mean performance with and without a
network hidden layer

It can be seen from figure 6 that the removal of the hidden layer makes no
significant difference to the final ability to perform the food gathering task. In fact, the
animats with the simpler architecture display a much greater ability in the early stages of
the search, and evolve more rapidly, than those with a hidden layer. This can be
attributed to the much smaller weight space that the GA has to search. We conclude
that the original animat architecture, with seven hidden units, contains excess free
parameters for this simple food gathering task. We further conclude that, as the simple
perceptron (single layer) architecture can learn this task, the food gathering task may be
linearly separable (see Minsky & Papert, 1969).

Finally, we consider the phenomena that Parisi, Nolfi and Cecconi observed and
originally explained in terms of behavioural self-selection of stimuli. In their example,
a given high performing animat (i.e. one from a late generation) was found to be much
more likely, for example, to encounter food at relatively small angles (i.e. to its right)
than at large angles (to its left), as it moved around its world. They also observed that
the same animat was more likely to make an appropriate action choice, i.e. one which
moved or oriented it closer to the food, if the food was detected at a small angle than if
it were detected at a large angle. They concluded that, as the animat is able to influence
its sensory input by its movements, its food gathering ability had evolved in two parts.
On the one hand, it had learned to respond effectively to a reduced set of input stimuli,
i.e. when the food is on the right, and on the other, it contrived to move in such a way
as to encounter situations from this 'known' set of stimuli more often than other
situations (such as the food being on the left). As further evidence of this process at
work, it was observed that animats which were replaced at a random position after each
move were much more likely to make inappropriate action choices, as they were being
deprived of the benefit of self-selecting their input stimuli through their movements.
This self-selection process was considered evidence of the influence of behaviour on
the course of evolution.

We now offer an alternative explanation for these observations. We have
observed, in these experiments, that animats from later generations tend to display a
reduced behavioural repertoire, relying on turns made in one direction only. A given
population might come to contain individuals which only exhibit the ability to turn left,
for instance, and so would have to make three left turns in order to turn right.
Obviously any optimum food gathering strategy would incorporate the ability to turn
either left or right, depending on the situation, and any individual which happened to
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evolve such ability would perform better than its purely left-turning contemporaries, SO
its offspring would come to dominate the population. Initially, however, the same
would be true for any individual which evolved the ability to make useful sequences of
left2 turns, among a population of individuals which didn’t turn at all, or turned either
way at random. As an initially randomised population evolves, then, the ability to
successfully employ one kind of turn, such as left, may evolve by chance, and confer
such a selective advantage that the trait would then rapidly spread through the
population. Under the influence of further evolution, this ability would be refined and,
the greater the refinement, the less likely it would be for right-turning ability to occur
by mutation. In order to arrive at an ideal individual, with the ability to turn either way,
the movement through weight space would most probably have to be greater than that
possible in a single mutation. Every intermediate step between a good left-turning
individual and a possible individual which could turn both ways would have to
represent an improvement in fitness in order for the transition to occur, and this is very
unlikely - an individual that is half way between being left-turning and ‘ambidextrous’
is unlikely to be better than one well adapted to being purely left-turning.

The observation that a high performing animat only ever turns in one direction
seems therefore to be simply evidence of premature convergence of the population on a
sub-optimal solution, a common problem with GAs (see for instance: Baker, 1985;
Booker, 1987; Eshelman and Schaffer, 1991). This in itself is sufficient to account for
all those observations which Parisi, Nolfi and Cecconi explained in terms of self-
selection of stimuli. An individual which only ever turns left will always tend to
decrease the angle of a food cell relative to itself. This would account for an observed
statistical bias towards encountering small food angles during the course of the animat's
life. If the food is on the animat's right (i.e. the angle is large), the animat's chosen
action, to turn left, may be highly inappropriate. The same action, however, becomes
more appropriate with each repeated left turn. This accounts for the observation that
correct action choices are associated with more commonly encountered sets of stimuli
(in this example, small angles), and also the observed drop in the frequency with which
appropriate actions are chosen if the animat is randomly re-positioned after each move.
The principle of Occam's Razor would tend to favour our explanation for these
phenomena, that they are all evidence of premature genetic convergence, for its
simplicity.

CONCLUSIONS

In this paper we have presented the results of a study of the interaction between
learning and evolution, based on the experimental scenario described by Parisi, Nolfi
and Cecconi (1991). While we do not dispute that the Baldwin effect can be observed
in many evolutionary systems, we have found no evidence that learning has a beneficial
effect on evolution within the context of these experiments.

We have shown that the food gathering task in these experiments is learned more
successfully by simple perceptrons than by multi-layer networks, which suggests that it
is a linearly separable problem. Finally, we have offered a more simple explanation,
that of premature convergence due to loss of population diversity, for the phenomena
which Parisi, Nolfi and Cecconi explain as behavioural self-selection of input stimuli.
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