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Abstract

Various researchers have looked at ways of using supervised learning
(i-e., training) to obtain adaptive robotic behaviours, e.g., [Barto et al.,
1988,CULff et al., 1993]. However, the limitations of this approach are still
unclear. This paper presents the results of an empirical study involving
three behaviours and three, well-known learning algorithms. The results
of the study suggest that ordinary supervised learning algorithms (such as
ID3 [Quinlan, 1986] and Backpropagation [Rumelhart et al., 1985]) only -
perform well when applied to a certain class of behaviours. A statistical
analysis is presented which clarifies the characteristics of this class.’

1 Introduction
The paper presents an empirical study which investigated three behaviours:
o Obstacle-avoidance: the ability to move around an environment avoiding
any obstacles.

e Pursuit: the ability to follow a moving object around an environment.

e Foraging: the ability to move towards relatively small objects and away
from relatively large ones.

1A video of the simulations performed in the study is available from the author.




These behaviours were investigated using computer simulations.”> The simula-
tions involved a 2-dimensional world and very simple, simulated robots (or ‘an-
imats’). The assumptions was that the simulated robots had two free-wheeling
castors situated fore and aft and two drive wheels situated along the central,
latitudinal axis. The aim was to get the algorithms to learn to control the speed
of the two drive wheels so as to give the robot the desired behaviour (i.e. to
move forwards or turn to right or left).

In all the simulations performed the simulated robots were able to probe their
environments using an active ranging system. In each time step, the simulated
robot’s ranging system delivered a set of inputs (stimuli) showing the range to
the nearest obstacle along a fixed set of ‘rays’. The plan view shown in Figure
1 depicts a single simulated robot situated roughly in the centre of the space.
The robot is represented as a small box with an arrow pointing in its direction
of motion. The four dashed lines are the probe rays. The small integers show
the points at which the probe rays have intersected with an obstacle.?

2 Training algorithms

The study covered the following supervised learning algorithms: ID3 [Quinlan,
1986], Backpropagation [Rumelhart et al., 1986], Nearest-neighbours [Duda and
Hart, 1973], Conjugate-gradient descent [Johansson et al, 1990], Quickprop
[Fahlman and Lebiere, 1990] and Cascade-correlation [Fahlman and Lebiere,
1990]. Extensive trials showed that on the tasks considered the various algo-
rithms produced comparable levels of generalization performance. Due to this
lack of variation only a subset of the results are actually shown below. These give
figures for a typical ‘connectionist’ algorithm (‘conjgrad’ or Conjugate-gradient
descent) a typical ‘classical’ algorithm (ID3) and a typical ‘statistical’ algorithm
(Nearest-neighbours).

3 Methodology

For each possible combination of learning algorithm and behaviour the following
steps were carried out.

(1) A ‘hand-simulation’ of the relevant behaviour (based on a hand-coded con-
trol procedure) was implemented.

2The simulations were run under the Poplog environment running on a Sun SPARCstation
14
3The actual number shown is the internal code used to represent the obstacle.
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Figure 1:

(2) In earh step of the simulation, the robot’s stimulus-response profile was
recorded.

(3) Ihe recorded stimulus-response pairs were presented as a training set to
the learning algorithm.

(4) A new simulation was run with the simulated robot being driven by the
l-arned representation (i.e., the output from the learning algorithm).

(3) Ther produced behaviour was evaluated as a reproduction of the original
behaviour.

The first behaviour examined was ‘obstacle avoidance’ (just called ‘avoidance’
helow) This behaviour involves moving around an environment avoiding any
obstacles. In Figure 2 we see a short trace of a simulated robot producing
avordance behaviour. The robot’s position in each simulation step is shown
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as a small, arrow-topped box as before. Thus the sequence of boxes shows the
robot’s trajectory around the environment. Note how the trajectory steers clear
of all the obstacles. The simulated robot in this task received inputs from four
range detectors arranged in a 45 degree arc.?
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Figure 2:

The second behaviour examined was ‘pursuit’. In this behaviour the simulated
robot must track a moving object around the environment. (The environment
contained no obstacles in this case.) In Figure 3 we see a trace of a simulated
robot producing the relevant behaviour. The simulated robot is shown here
using dashed lines. The target is shown using unbroken lines. The simulated
robot in this task received inputs from seven range detectors arranged in a 70
degree arc.

The final behaviour examined was ‘foraging’. In this behaviour the simulated
robot must move towards any small obstacles in the environment but away
from any large ones. A typical scenario for the foraging behaviour is shown in
Figure 4. There are two objects in the environment: one small and one large.
The simulated robot in this task received inputs from seven range detectors
arranged in a 100 degree arc.

%1n fact, in this simulation the robot used two pairs of ‘wing-mounted’ range detectors.
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Figure 3:

4 Derived training pairs

As mentioned above, training sets for the learning algorithms were derived sim-
ply by writing down the robot’s stimulus-response profile at each step of the
simulation. The inputs from the range detectors were presented to the robot
as real numbers in the range 0-1. The inputs varied linearly and inversely with
the measured distance. The amount of drive applied to the two wheels in each
simulation step was stored in the form of two numbers in the range 0-1. Thus, a
right turn with no forwards motion would be represented by the pair <1 0>. A
sample of training pairs derived for the avoidance task is shown in Table 1. Note
that the first four numbers in each row (training pair) are the range measures
along the four rays. The final two numbers in each row specify the required
amount of drive to be applied to the two drive wheels.

5 Results

The results of the study are summarized in Table 2. The figures in the row
labelled ‘hand-sim’ show the performance of the simulated robot during hand-
simulation. (These are ‘optimal’ performance figures.) The figures in the row
labelled ‘random’ show the performance obtained using a random move genera-
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Figure 4:

tor. The row labelled ‘conjgrad’ shows the performance following training with
the Conjugate-gradient descent algorithm. The row labelled ‘ID3’ shows the per-
formance following training with the ID3 algorithm. Finally, the row labelled
‘NN’ shows the performance following training with the nearest-neighbours al-
gorithm.

The column labelled ‘avoidance-CF’ shows the relative frequency with which
the simulated robot crashed into an obstacle while attempting to reproduce
the ‘avoidance’ behaviour. The column labelled ‘pursuit-AD’ shows the average
(proportional) distance between the simulated robot (producing the pursuit
behaviour) and the target. The columns labelled ‘foraging-DF’ and ‘foraging-
MF”’ show the relative frequencies with which the simulated robots (producing
the foraging behaviour) moved into a large and a small object respectively.
‘DF” here stands for ‘Death Frequency’. ‘MF’ stands for ‘Meal Frequency’. All
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Table 1:

the results are based on training sets of 100 pairs, in which there was equal
representation of all possible output cases (i.e., robot motions).®

avoidance-CF | pursuit-AD | foraging-DF | foraging-MF
hand-sim | 0.000 0.048 0.000 0.778
random | 0.078 0.046 0.083 0.000
conjgrad | 0.006 0.076 1.000 0.889
ID3 0.006 0.041 0.933 1.000
NN 0.002 0.081 0.917 0.923
Table 2:

Looking at the ‘avoidance-CF’ column we see that the relative crash frequencies
produced by training are fairly low in all cases. This tells us that all the learning
algorithms were able to recapture the original behaviour with a reasonably level
of accuracy. The situation is the same with ‘pursuit’. The low average-distance
values show that all the learners performed well on this behaviour. (The robot
driven by the ID3 output actually outperformed the hand-simulation.) However,
when we look at the ‘foraging’ columns we see that the reproduced behaviours
tended to produce ‘Death frequencies’ (crashes into a large object) that are
equal to and in some cases greater than the ‘Meal frequencies’ (crashes into a
small object). This tells us that none of the learning algorithms was able to
recapture this behaviour.

5With such a simple simulated world it is essential not to use too large a training set since
this may result in the training set including every possible stimulus-response association;i.e.,
a complete lookup table for the behaviour. In this case, algorithms such as ID3, which build
lookup tables in the limit, produce perfect performance necessarily.
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6 Discussion

The results seem to suggest that ‘avoidance’ and ‘pursuit’ are much easier to
learn than “foraging’. Why should this be? To answer the question we have to
consider the statistical regularities of the input-output mappings underlying the
relevant training sets. Statistical regularities manifest themselves in three main
forms. First we have regularities that are to do with single variables treated in-
dependently (the ‘univariate’ regularities.) Second we have the regularities that
are to do with relationships between variables (the ‘multivariate’ regularities).
Finally, we have regularities that are to do with relationships between values
of variables, i.e., relationships whose roles are not fixed to particular variables.
Let us label these three forms type 1, type 2 and type 3 respectively.

The following training set provides an example of a type 1 regularity. Each line
shows a specific training pair. The input appears on the left of the arrow. The
output appears on the right. In all cases the inputs and outputs are just bit
vectors.

11110 —> 1
11001 -—> 0
01101 - 1
11010 —-—-> 0
11100 --> 1
10000 --> 0
10111 -—> 1
11011 - 0
00101 --> 1
10010 -—> 0

The regularity here (i.e. the input/output ‘rule’) is simply that the output bit
is identical to the third bit of the input vector. This forms a type-1 (univariate)
regularity since the effect in question derives from a single input variable treated
independently.

In the following training set we see an example of a type 2 regularity. The
rule here is that the output bit is 1 just in case input bits 2 and 4 satisfy
the exclusive-or logic function. This forms a type 2 regularity since the effect
derives from a relationship between two variables. It is impossible to work out
the correct output without taking into account both relevant input variables.

00111 =--> 1
01011 --> 0
10010 - 1
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0ooco000 -—-—> 0]
01001 -> 1
10001 -> 0
10011 ==> 1
11110 -—> 0
00010 --> 1
cii111 -=> 0
i1101 --> 1
11010 - 0
ooco0o11 —> 1
10000 - 0

Finally, the training set below illustrates a type 3 regularity. Here the rule is
that the output is 1 just in case there are duplicate values in the input vector.
To establish the correct output it is essential to discover whether there are two
variables in the input vector that satisfy the equality relationship. However, the
siting of the roles of the relationship varies from pair to pair. This is an extreme
form of multivariate regularity.

0.0 0.87 0.62 0.12 --> 0.0
1.0 0.37 0.25 0.75 --> 0.0
0.0 0.0 0.25 0.62 =--> 1.0
0.75 0.87 0.62 0.62 ~——> 1.0
0.0 0.87 0.37 0.12 --> 0.0
0.5 1.0 1.0 0.5 -——> 1.0
0.5 0.12 0.0 1.0 --> 0.0
0.0 1.0 0.12 0.87 --> 0.0
0.87 ¢.12 0.5 0.37 --> 0.0
0.75 0.25 0.12 0.62 --> 0.0
0.12 0.62 0.12 0.12 --—> 1.0
0.12 0.5 0.82 0.37 --> 0.0

Higher type numbers correspond to move obscure forms of regularity. This
suggests that the performance of regularity-exploiting learning algorithms will
deteriorate as the type number of the relevant regularity increases. And this
seems to be what occurs. All learning algorithms carry out a (possibly implicit)
‘search’ through a space of representations. The goal of the search is to find
a representation that accurately reproduces the target input/output mapping.
Since the ‘search spaces’ for some task/learner combinations can be extremely
large, it is normally essential to equip the learner with a strong and correct
‘bias’ [Utgoff, 1986] that will tend to move it in the right direction.

However, even where biases are used, the size of the ‘unbiased’ search space still
provides a good measure of the difficulty of the learning task. And when we

AOYS




come to examine search space sizes for learning tasks involving type 1, 2 and
3 regularities we quickly see that tasks involving type 1 regularities are much
easier to learn than tasks involving type 2 or type 3 regularities.

In attempting to find a type 1 regularity it is only necessary to work through
the relevant variables checking each one for any relevant ‘effects’. When we
come to type 2 regularities we have to check all known relationships against
all possible n-tuples of variables.® To find a type 3 regularity we must check
all known relationships against all possible n-tuples of variables in all possible
permutations of the relevant input-variable sequence. The complexity of both
the latter forms of search is extreme.

By applying these statistical observations to the results of the empirical study
we can explain the apparent difficulty of ‘foraging’. Foraging is hard to learn
precisely because the regularity in the corresponding input/output mapping is
type 3. Avoidance and pursuit on the other hand produce training sets which
exhibit strong type 1 regularities. Let us see why this is the case.

Consider ‘avoidance’. In this behaviour, particular range inputs treated quite
independently have significance within the production of the desired behaviour.
If the stimuli (input) associated with a particular range probe is high this de-
notes an obstacle in close proximity. The desired behaviour is simply to turn
away from the relevant direction. This 1-to-1 correspondence between single-
variable effects and behavioural responses means that the training set exhibits
strong type 1 regularities. Similar remarks apply to the case of ‘pursuit’, except
of course that the desired behaviour is now produced by turning fowards the
direction from which there has been a high (i.e., close) range stimulus.

The situation with ‘foraging’ is subtly different however. The reception of a
stimulus showing the close proximity of an obstacle has no clear significance
within the desired behaviour. The stimulus might have been generated by a
large object (meaning the robot should turn away) or by a small object (mean
the robot should turn towards the object). To establish the correct response the
robot must somehow decide whether there is a patiern of stimuli corresponding
to a large object or a small object. This entails deciding whether a number of
stimuli fit together within a framework of mutual relationships. Given the way
the robot moves through the environment, the pattern in question will effectively
‘float’ over the range measures. The roles of the relationships underlying the
pattern, then, will not be fixed to particular input variables. The regularity is
therefore type 3. From the statistical point of view, then, we would expect the
foraging behaviour to be very hard to learn. The empirical study appears to
confirm that it is.

SThe value of n here is simply the number of roles in the relevant relationship.
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7 Summary

The paper has presented an empirical study of three simple behaviours. The
study looked at how well ordinary supervised learning algorithms perform when
used to train simulated robots to perform certain behaviours. Marked differences
in performance were noted and these were explained by drawing a distinction
between the three basic forms of statistical regularity.
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