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Abstract

During these last years, our group has developed a powerful qualitative method
which formalises the interactions between the elements of a network in terms of logical
(n-level) vanables, functions and parameters. This method emphasises the role of
feedback loops and has been fully automatized. Until now, it has been mostly used to
analyse models for the regulation of viral expression and of the immune response.

In this paper. we discuss the inductive (or synthetic) use of the new concepts of
"feedback loop cfficiency” and "feedback loop characteristic state" to determine the
basic features necessary to obtain defined spatial and temporal patterns. By “inductive"
we mean that instead of proceeding from a model to its dynamics we start from the
behaviour and try 1o rationally infer models. We will illustrate our methodology with
two simphfied but representative examples taken from Neurobiology and Genetics of
Development.
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INTRODUCTION.

Classically, regulatory networks are treated in either of two diametrically opposed
ways : the purely verbal description and the fully quantitative description in terms of
(non-linear) differential equations. Intermediate or "logical" approaches have been
proposed several times, notably by Rashevsky (1948), Sugita (1961) and Kauffman
(1969), in a biological context.

Starting in the seventies, our group has developed a logical formalism which
avoids some of the unrealistic aspects of the classical logical description. This work led
to the "generalized logical method" which formalises the interactions between the
elements of a network in terms of discrete (binary or multi-level) variables, functions
and parameters. The salient features of this method are an emphasis on the role and
properties of feedback loops, the possibility for the logical variables and functions to
take threshold values and a fully asynchronous treatment. Since the generalized logical
formalism and method are described in detail elsewhere (Thomas, R. & D'Ari, R.,
1990; Thomas, R., 1991), we recall here only the points necessary to understand the
contents of this paper. '

Feedback loops and their characteristic states

The generalized logical method emphasises the role of the feedback loops as
fundamental dynamical determinants. In a feedback loop, each element exerts a direct
effect only on the following element of the loop but an indirect effect on all elements of
the loop, including itself. In a given loop, either all elements exert on themselves a
positive effect or all elements exert on themselves a negative effect. For this reason, we
distinguish positive and negative loops ; which one depends on the parity of the
number of negative interactions. Negative loops can generatec homeostasis whereas
positive loops can produce multistationarity. We say that a loop is "effective”,
"efficient" or "functional" when it actually generates homeostasis (negative loop) or
multistationarity (positive loop).

In a given feedback loop, each variable acts above a characteristic threshold ; one
can thus define a loop-characteristic singular state! formed by the intersection of the
different thresholds involved (for example, if x acts on y above its 27d threshold 2s and
y on x above its 37 threshold 3s, the characteristic state of the loop is simply 2s%s, i. e.
x =25, y = 3s). The main interest of the notion of loop-characteristic state reside in a
reciprocal link with the property of loop efficiency : the parametric conditions for a
loop to be efficient (i. e. to produce multistationarity or homeostasis) coincide with the
condition for which the corresponding characteristic state is steady.

Moreover, it was discovered (see Thomas 1991) and later formally proven
(Snoussi and Thomas, 1992) that among the logical states located on one or more
threshold ("singular” states), only those which are loop-characteristic can be steady.
This enormously simplifies the analysis of complex systems because, in order to
identify all the steady states, instead of being obliged to scan all the logical states for
steadiness, one just has to consider the regular states and those (usually few) singular
states which are loop-characteristic. In fact, as developed below, the analysis focuses
on the identification of the feedback loops and their characteristic state, and on the
conditions (set of parameter values) which render a state steady (and the characteristic
loop efficient).

We have developed computer programs, written in Pascal and available on
Macintosh, DEC and CDC computers, which automatize the dynamical analysis of
complex networks (Thieffry ez al., 1993). So far, we have applied our logical method
to the analysis of the regulatory network responsible for the lysis/lysogeny choice in

bacteriophage A, as well as to the regulation of HIV and HTLV expression. Another
important application deals with the modelisation of the regulation of the immune
response (Kaufman & Thomas, 1987 ; Muraille and Kaufman, in preparation ).

1we use "singular states” for the states located on one or more threshold(s) vs "regular states” for the
others.
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Analytic vs synthetic approaches

In the applications mentioned so far, one starts from the model (graph of
interactions, itself inspired from experimental data) and the logical work proceeds from
the model toward its implications (which in turn will have to be checked with new
experiments) ; this is an analytical (or deductive) approach.

In this paper, we want discuss another approach, called inductive or synthetic
approach, which proceeds in the opposite way. Starting from a given behaviour, one
uses the logical tool to propose models (as simple as possible) which permit or impose
this behaviour. This approach has been already discussed by one of us several years
before, in the context of a pure Boolean formalism (Thomas, 1979; Thomas and D'Ari,
1990; see also Richelle, in preparation). In the context of two examples taken from
Neurobiology and Developmental Biology, we briefly recall the method developed
earlier and discuss a recent development based on the knowledge of the properties of
feedback loop and on the notion of characteristic steady states.

EXAMPLES OF MODEL SYNTHESIS

A) Modelising an oscillating neural network

This first example comes from well known experimental and theoretical work on
neural networks (Friesen & Stent, 1977). In the context of this paper, we have chosen
to discuss a simple oscillating network comprising four neurons. Let us first recall
the treatment proposed initially (Thomas, 1979; Thomas & D'Ari, 1990). If we
translate into logical terms the experimental "phase diagram" for this four neuron
system, we obtain the following logical cycle? :

1000 —»- 1100 —= 0100 —p= 0110
a ['od

‘df F
T d
1001 <#— 0001 <+— 0011 <+— 0010

Figure 1. Each group of four digits represents a state of
the system. For example, 1000 means that neuron a is on
and neurons b, ¢ and d are off. The series of state
transitions is closed on itself, constituting a logical cycle.

Given this cycle, one first wishes to find the models in which the system is
forced to follow the cycle indefinitely once one of the above states is reached. This
amounts to saying that for each of the eight states in the cycle, the only possible
follower is the next state in the cycle. This gives us the table 1.

In this table, the dashes correspond to unspecified values. This means that for

each of the 32 dashes one can arbitrary use a 0 or a 1; each of these 232 models will
behave as expected. Among the numerous ways to construct connections that would
impose this behaviour, one can find the simplest circuits using subtables for each
functions (Florine, 1964). For this purpose, one method consists of drawing a two-
dimensional truth table for each function, as in table 2.

2Since the experimental phase diagram mentions a neuron simply "on" or "off", we need here only
binary variables.
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abcd|ABCD abcd]|]ABCD
o000 |- - - - 1 1 080 [0 1 .0 0
0001 1 001 1101 - = = -
001 1 0 0 01 1111 - - = -
00100011 1110 ¢- - - -
0110710010 1010 ¢}- - - -
0111 % B A A 1011 - - - -
0101 - w W 1.8.8 1 1 000
010010 0 1000 1 100

Table 1. Incomplete state table corresponding to logical cycle of
figure 1. The vector formed by the variable a b ¢ and d is called the
"state vector” ; the functions A, B, C and D are the prospective values
of the corresponding variables and form the "image vector”. When the
value of the function vector differs with the corresponding value of the
state vector, there is a transition order on the corresponding

variable(s).
A 00 01 11 10 ab B 00 01 11 10 ab
00 - 0 0 1 00 |- 1 1 1
or |t} - - |1 01 0 - - 0
11 0 - - - 11 0 - = -
10 0 - - 10 0 0 - -
cd cd
C 00 01 11 10 ab D 00 01 11 10 ab
00 |L- If 0 O 00 - 0 0 0
01 0 - - 0 01 1 - - 0
11 0 - - - 11 1 - - -
10 (1 1 [ - - 10 1 0 = -
cd cd

Table 2.Truth subtables corresponding to the four functions. The
frontiers separating 1's and O's correspond to the most compact logical
expressions.

Chosing the most compact logical expression for each function, we obtain the
following equations :

Boolean equations : Generalized logical equations :
A=h.T A = da(k; + ky 5b + ky 50)
B=c.d B = dy (ko + ko 5C + ky 4d)

e B 1 C = de(ks + ks 13 + k3 4d)
D=a.b _ e
D =dq(ky + kg 42 + ky 5b)

in which A, B, C and D are Boolean in which, in addition, d; represent the

functions; a, b, ¢ and d are Boolean operators of discretisation and kj j. the

variables; "-" and "." are the real parameters introduced by Snoussi;

Boolean operators "not" and "and". here, the "+" represents the arithmetical

sum. L™

One can easily verify that these equations (corresponding to the figure 2) impose
the expected behaviour (logical cycle of figure 1).
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In this example, we were looking for models which impose a given behaviour.
One might also ask what logical circuits will simply permit a given behaviour. In fact,
one can proceed in a similar way, starting from a less restrictive state table (i. e. a table
containing more dashes). This has already been done in the case of the same oscillatory
network by Thomas and d'Ari (1990).

Let us now discuss how the notions of feedback loops and characteristic states
help us to find the basic features necessary to obtain the same logical cycle. In the
center of the logical cycle, one expects to find a singular steady state corresponding to
the "focus" of the differential description. In order to have a cycle involving transitions
of all four variables, the steady state must be located at the four thresholds, i. e.
precisely at 's's's!s.

The easiest way to obtain such a steady state, located in the centre of a logical
cycle, would be provided by a negative loop involving the four elements. But this
doesn't work here, because Friesen and Stent believe, for experimental reasons, that
their system involves only inhibitory interactions, and we know that a loop composed
by four negative interactions has to be positive.

In this context, the simplest way to obtain a logical cycle symmetrically involving
all four variable, consists in using four three-element negative loops, which, taken
together, have a characteristic state in !s!s!s's (the corresponding graph and matrix of
interactions are given below). For parameter values which render this characteristic
state steady and the four negative feedback loop efficient (see appendix), the system
behaves exactly as in figure 1. In fact, the graph of interactions corresponds to the
generalised logical equations given above, whereas the parametric constraints
corresponds to the more restrictive set of Boolean equations.

; A 0 1 1 o0
B 0 0 1 1
) @ 1 0 0 1
D 1 1 0 o0
(A) ®)

Figure 2. Graph (A) and matrix (B) of interactions
corresponding to the logical cycle of figure 1.

Summarizing and generalizing our synthetic approach, we propose the following
scheme :
1) translation of the temporal pattern into a sequence of logical states ;
2) if this sequence form a logical cycle, one can localise the corresponding
characteristic state ;
3) one can then look for the simplest combination of feedback loops which may
produce the required singular state and the corresponding logical cycle (taking into
account predefined interactions).

B) Modelising a simple case of pattern formation

Our second example is inspired from a well-studied case of pattern formation in
Drosophila melanogaster (for reviews, see Ghysen & Dambly-Chaudiére, 1989 and
1992). In the larva as well as in the adult fly, the sense organs are arranged in a very
precise and reproducible pattern. The determination of this pattern formation seems to
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involve some kind of preliminary positional information and cellular interactions. The
formation of a sense organ implies first the local expression of a set of genes in a group
of cells ("proneural cluster"), followed by the commitment of one cell which then
laterally inhibits its neighbours and, after a few mitoses, leads to the differentiation of
the cells which constitute the sense organ (neuron(s), support cells, etc.). Several genes
are involved in these different operations, especially the four genes of the achaete-scute
complex. The expression of two of them, namely the genes achaete and scute, is clearly
involved in the definition of a proneural cluster as well as in the sorting out of one cell
of the cluster. The analysis of mutations and transient expression tests for theses genes
indicates that each of them is sufficient to lead to the formation of a sensory organ, but
also that the two genes could regulate each other. Nevertheless, the exact interactions
and molecular mechanisms involved are still unknown.

In the context of this paper, we apply our synthetic approach to an idealized
version of this type of pattern formation. Let us use a convenient two-dimensional
symmetrical situation which involves seven identical cells; by analogy with
macrochaete pattern formation in Drosophila, let us start with a more or less uniform
expression of a gene x in the seven cells ; after some time, the expression of this gene
becomes more important in the central cell; finally x expression is inhibited in the
peripheral cells and remains only in the central cell (see the figure 3).

(A) No expression (B) Uniform expression

(C) Sorting out of central cell (D) Lateral inhibition

Figure 3. Schematic representation of the main successive steps of a
proneural gene expression in a cluster of seven cells (from A to B, to C, to D).

Given this simplified but well defined situation, we now wish to find the basic
features which would account for the behaviour of the system. Let us associate a
variable x; to the x gene in each cell. Because all the cells are identical, any interaction
proposed in one cell or between two adjacent cells should exist in any of or between
any couple of adjacent cells of the system.

The fact that cells which are genetically identical can persist in at least two stable
states of gene expression strongly suggest that at least one control gene takes part in a
positive feedback loop (direct or indirect autocatalysis). In principle there are two
possibilities : either this loop involves only intra-cellular interactions and thus remains
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functional after cell dissociation ; or this loop involves inter-cellular interactions and
thus is broken when cells are dissociated.

Regarding to the last case, there are again two possibilities, according to whether
positive or negative interactions are used to construct the inter-cellular positive loops.
To these two possibilities correspond clear cut global behaviours :

- On the one hand, positive interactions may lead to cooperative expression of x in the
cluster ; starting from a non uniform distribution of x expression, such positive
interaction would lead to ubiquitous expression of x in the cluster ; moreover, the
central cell being irrigated by a greater number of positive interactions, it could be
autornatically selected.

- On the other hand, negative inter-cellular interactions may lead to lateral inhibition,
i.e. to the inhibition of x expression in the neighbour cells by the cell(s) which express
it.

The three types of positive feedback loops ("+", "++", "--") are drawn in the
figure 4 (drawn for two adjacent cells).

(A)

(B) (©

Figure 4. Graphs of interaction for two cells i and j. (A)
intra-cellular positive feedback loop ; (B) inter-cellular positive
feedback loops "++" ; (C) inter-cellular positive feedback

1" 1"

loops :

Depending on what is given as an entry to our system (to go from A to B in
figure 3), one or more of the three types of positive feedback loops have to be involved
to account for the sequence of patterns of figure 3. Nevertheless, the positive loops
formed by negative inter-cellular interactions seems to be unavoidable in order to reach
the final pattern. In addition, positive loops formed by positive inter-cellular
interactions could account for a cooperative behaviour of the cells of the cluster, i. e.
the reaching of an uniform expression from non uniform entries. Finally, intra-cellular
autocatalysis could lead to a certain cell autonomy, so that expressing cells would
remain so even after cell dissociation.

Combination of two or three of the positive loops of figure 4 will lead to the
combination of their properties for appropriate parameter values. To determine the
corresponding range of parameter values, one just has to compute the parametric
constraints for each feedback loop to be efficient and, if compatible, fuse them.

Before concluding, let us briefly discuss what are the experimental evidences to
involve the three different types of positive loops in respect with the formation of
macrochaete pattern in Drosophila. (for a review, see Ghysen ez al., 1993)

Inhibitory inter-cellular interaction has been involved at several occasions,
especially to explain the regular spacing between sensory bristles (see for example
Wigglesworth, 1940 ; Richelle and Ghysen, 1979 ; Simpson, 1990). Such inter-
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cellular inhibition could take place either before ("mutual inhibition") or after ("lateral
inhibition") the single out of one cell, but likely could lead to the same final pattern.
Recently, two genes, delta and norch, coding for transmembrane protein, have been
proposed to mediate this inter-cellular communication : moreover, delia seems to be
positively controlled by achaere-scute, whereas notch could negatively control achaete-
scute. Other genes seems to be involved in the signal transduction.

Until now, there is no experimental evidence supporting activatory inter-cellular
interaction. Thus, cooperative expression doesn't seem to be required in macrochaete
pattern formation.

There are a set of experimental evidences in favour of intra-cellular autocatalysis.
Effectively, both achaete and scute seem to be able to activate their own expression ;
moreover, they might mutually activate each other. This self activation could constitute
the trigger between "competence" and "determination” states. If this is true, once a cell
has been triggered to the determined state, it could remains so independently of its
neighbours, even after cell dissociation. This is presently under experimental
investigation by J. van Helden in the laboratory of A. Ghysen.

To sum up, the present data suggest a model containing both intra-cellular
autocatalysis and inter-cellular inhibition. For two cells, we obtain the following
graph3 :

Figure 5. Graph containing the experimental interactions :
intra-cellular autocatalysis and inhibitory inter-cellular
interactions. For two cells, we thus have 3 positive feedback
loops.
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APPENDIX

Notations :

K; is the equivalent of the independant term in differential equations ; it
corresponds to what biologists call the basal level of expression ;

K j corresponds to a positive effect (presence of activator or absence of inhibitor)
of the variable j on the variable i;

K jk corresponds to joint positive effects of variables jand k ; ...

Oscillatory neural network

The constraints on the logical parameter for which the three negative ree-element
loops are efficient and the state 1s!slsls is steady are simply :.
Ki1=K11=K12=0,Kj93=1
Ky=Kp3=Kz4=0,Kp34=1
=K31=K34=0,K314=1
Ks4=K41=K42=0,Kgq12=1
For this parameter values, the system follows the cycle presented on the figure 1
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