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1 Introduction

In order to explain the behaviour of social insects there has been a considerable amount of recent
work which exploits self-organisation as its main behavioural principle 1-8  In particular this
approach has been taken to explain the methods whereby ants forage for food.

One simple example of this is the choice over a simple branch between food sources either of
differing quality or at differing distances or both. It is observed that in these simple cases the
ants tend to choose the better food or the shorter path, when presented with the choice 5=, We
should wish to know how the colony chooses between he possible paths offered to it.

Since the only information the colony has is that of the relative success of its foragers, we are
interested in how it can make a choice of path? That is to say, what is the algorithm the colony
is exploiting to make its decision.

We are not primarily concerned with the precise recruitment mechanisms employed by individ-
ual ants, such as the laying of pheromone trails. There has been a large amount of fine empirical
work conducted to elucidate these mechanisms 1~ %, and we are aware of a great diversity of re-
cruitment behaviour. We can reasonably expect that recruitment behaviours will evolve to support
an effective decision making process. We of course acknowledge that a decision making process is
an emergent property of the system, and may only exist when the ants possess the behavioural
repertoire to implement it. ;

Consequently our algorithms are based on properties that individuals ants are known to posses.
For instance we know that individuals may influence their nestmates to follow one path. We
deliberately introduce no more detail than these essential properties: we assume only that ants
may influence their nestmates, and do not specify a particular mechanism.
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Figure 1: Conceptual model of path choice.

2 The Algorithms
2.1 Path Choice

The model is illustrated in fig. 1. Ants foraging from the nest may travel along either of two
paths, which may be of different length. The food sources are considered equal, and have no effect
on the decision process.

Ants leave the nest and select one of the paths. They travel along this path and back, and
on return they influence their nest mates to take that same path. There is a global bias between
the two paths which probabilistically determines which path the ants take. It is initially set at
50%-50%, so ants make a random choice. Returning ants update this bias by some value, in favour
of the path they selected. After returning and influencing the bias, the ants leave again selecting
a path probabilistically. The ants have no memory, and always act according to the current bias.

Ants will return faster from the shorter path, so the bias is likely to be updated in favour of the
short path more often. Positive feedback will tend to take an unequal bias to fixation, 100%-0%,
where all ants take the same path. Consequently there is a tendency for the colony to “choose”
the short path. Random drift may however establish a bias in favour of the longer path, and the
effect of positive feedback may lead to the colony choosing the longer path instead of the shorter
path.

The algorithm is implemented in very simple C code, illustrated in fig. 2. This ensures accuracy
and allows many replicates. We can vary several parameters:

o The number of ants foraging from the colony.
o The length of the two paths.

© The amount of influence each ants has on the global bias, when returning from a path. For
any simulation, this is a fixed value: all ants always exert the same amount of influence.

e The rate at which ants initially leave the nest, or release rate Foraging ants do not all leave
simultaneously, though once they have left the nest they continue to forage.
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#define TIME ©
#define DIR 1

/#definition of variables: %/

int ant([2][1000],

/#array representing up to 1000 ants.

Each has a

“time value" and a "direction value"s/

dist[2], /*lengths of the two paths.*/

T, /*the value of "R" (time between ant releases)#/
influence, /#the value of "I" (influence of each ant)=/

n_ants, /#the number of antax/

zero_fix, /#number of times (in 1000 reps) path 0 is fixeds/
rep, /#replicate number=s/

bias, /#bias towards path 0 (1..1000 rather than per cent)#/
¢ - o /*loop counters*/

/*execution of a set of simulations: #/

dist[0]=10;
for(dist[11=10; dist[1]1<=200; dist[1]+=5)
{ for(n_ants=1; n_ants<=200; n_ants+=5)

}

{ zero_fix=0;
for(rep=0; rep<1000; ++rep)
{ bias=500;
for(i=0; i<n_ants; ++i)

{ ant[TIME][i]= 1+(i#*r);
ant [DIR] [i]=-1;
}

for(t=0; bias>50 && bias<950; ++t)
{ for(i=0; i<n_ants; ++i)
{ if( (--ant[TIME][i])==0)

{ if (ant[DIR][il==0)
bias+=influence;

else if(ant[DIR][i]==1)
bias-=influence;

ant [DIR] [i]=(bias<mrand(1000))71:
ant [TIME] [il=dist[ant [DIR] [i]];

1
}

zero_fix+=(bias>=950)71:0;

¥
¥

printf(" %d %d %d\n",dist[1],n_ants,zero_fix);

/#path 0 has a fixed length of 10%/
/*increasing length of path 1=/
/#increasing the number of ants =/
/#initialise path choice counters/
/*produce 1000 replicatess/
/*initialise path choice bias to 50%*/
/#*each ant given: initial time value,
incremented in steps of r; direction
value of -1 when still in the nests/

/#proceed until bias is fixeds/

/#*each ant in turn=/

/*Subtract one from ant’s time
value. If zero it is about to
leave the nest=/

/#if it last took path 0...=%/

/*... increase the bias=/

[+if it last took path 1...s/

/#... decrease the biass#/

0; /*make a random path choice%/
/*add path length to time valuex/

/#all ants donex/
/#a path fixed=/
/*if path 0 was fixed, count its/

/#1000 replicates dones/

/%end of increasing ants numberss/
/*print out results/

/%end of increasing path lengths=/

Figure 2: The algorithm implemented in C. See Stickland et al. (1993) for full details.
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For details of the simulations see Stickland et al. °.

2.2 Food Source Choice

The model is similar to the path choice model (fig. 1), but the path lengths are equal. The quality
of the food sources can be different.

Ants leave the nest, travel to a food source and back, and influence their nestmates. As with
the path choice algorithm there is a global bias which the ants can update. The amount of influence
the ants exert on the bias is not constant, but is determined by the quality of the food source they
last visited.

Ants returning from the richer food source have a greater influence on the bias, and there is
a tendency to move to fixation on the richer food source. Positive feedback will tend to take an
unequal bias to fixation. Again, random drift may lead to fixation against the expected trend,
with the colony choosing the poorer food source.

The algorithm is again implemented in very simple C code. Only two variables are required to
investigate the behaviour of this algorithm.

e The number of ants foraging from the colony
e The values of the two food sources.

Full details are given in Stickland et al. 10

2.3 Path Choice with Different Food Sources

This algorithm combines path choice and food source choice. It is essentially the same as the path
choice algorithm, except the food sources are of different quality. When an ant returns from a
path, the influence it exerts on the bias is determined by the quality of the food source it visited.

We place the richer food source at the end of the longer path. This presents the colony with a
conflict of interests: it may choose the short path or the richer food source. Full details are given
in Stickland et al. 1°

3 Behaviour of the Algorithms

"The implementation of the algorithms allowed us to explore their behaviour over a very wide range
of parameter values. For instance the values we used for release rate covered a range between two
extremes: when many ants left the nest before any ant had time to return, and when one ant
might make several round trips before another ant left the nest at all.

For any single set of parameters, 1000 replicates were run to completion (95% confidence limit
of :32.) The performance of the algorithm is expressed as the number of replicates in which one
path, or food source, was chosen. A complete analysis is given in Stickland et al. 9-19,

3.1 Path Choice

Over a wide range of conditions the ant colony would show a strong tendency to select the shorter
path. The graph in fig. 3 shows a sample set of simulations, with a range of path lengths and
numbers of ants.

Several points are apparent from the simulations. The short path is more likely to be chosen
when:

o the difference between path lengths is large
e there are many ants foraging

o the release rate is high
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Figure 3: Success of path choice algorithm. The graph is three dimensional, contours representing
the number of replicates (of 1000 total) in which the colony finally chose the short path. The path
length shown is the long path: the short path is fixed at length 10. The length is the number of
time steps required to make one return trip. In this example the release rate was set for one ants
to leave the nest every 25 time steps. The ants exerted an influence of 2% on the global bias upon
returning. See Stickland et al. (submitted) for details.

When the influence exerted by ants is high, this will usually increase the chance of the colony
choosing the short path. When the release rate is slow, however, one ant may make several trips
(and update the bias several times) before other ants complete any trips. One ant will initially
choose a path randomly and is subject only to positive feedback as a selection force. If it has a
high influence it will have a large random effect on the bias, which can lead to the long path being
chosen.

3.2 TFood Source Choice

The ant colony shows a very strong tendency to select the rich food source, as illustrated in fig.
4. The range of simulations makes it clear that the rich food source is more likely to be chosen by
the colony when:

o the absolute values of the food are low (ants have a low influence)
e the food sources are of very different quality
¢ there are more ants foraging

We also recorded the number of time steps each simulation took to run to completion. The
time taken is very much greater when the food quality values are low, but only when there are few
ants. Clearly for small colonies there is a trade off between speed and accuracy when selecting a
food source.

3.3 Path choice with different food sources.

The behaviour of this algorithm is more complex to investigate. There is a conflict between
selecting either the short path or the rich food source: unlike the other two algorithms, there is

Wk




1000 W
900 +~
800 +
w
wn
o
[&]
S 700 F
73]
10 ants
600 - e 100 ants
500
! ! | I L |

10 11 12 Tl 14 15

rich food source quality

Figure 4: Success of the food choice algorithm. The graph shows the number of replicates (of 1000
total) in which the colony chose the richer food source. The food quality shown is the rich food
source: the poor source is fixed at the value 10.

no clear expectation of what is the “right answer”, against which to measure success.

To investigate this algorithm we estimate the equiprobable path length ratio. This is the path
length ratio at which the tendency to select the rich food and the tendency to select the short
path are exactly balanced. It can be identified by finding the path lengths at which the each
path is chosen in 500 of the 1000 replicates. Clearly the equiprobable path length ratio will vary
according to the parameter values (see fig. 5).

The equiprobable path length ratio increases when the difference between food source values is
increased. This is clearly because the tendency to select the richer food source will also be greater.
However, the equiprobable path length ratio will reach a maximum value. We call this the search
limit.

The search limit represents the point at which no further increase in food value will be detected
by the colony. The richer food source is too far from the nest for the foragers travelling to it to
return quickly enough to influence the bias. This is a property which emerges from the nature of
the information exchange in the system.

A large search limit indicates that the colony will choose a path predominantly according to the
food source quality. A low search limit indicates that the colony chooses predominantly according
to path length. The search limit tends to be large when:

o ants exert a low influence on the bias when returning to the nest
e the release rate is slow

A further property is that when there are very few ants present the colony will almost invariably
choose the richer food source. There is a minimum number of foraging ants necessary to detect
which path is shorter. This minimum number is reduced when the food quality is high (returning
foragers exert a large influence on nest mates).
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Figure 5 The equiprobable path length ratio, over a range of food quality values. The poor food
source is fixed at 5. The release arte values are the number of time steps between foragers first
leaving the nest

4 Conclusions

These algorithms illustrate that a choice between paths or food sources can be made collectively.
The individuals involved need act in only a very simple manner, making no comparative judge-
ments when exerting influence on nestmates.

We consider three parameters determined by the nature of the ant colony: the number of
foragers. the release rate from the nest, and the influence that foragers exert on their nest mates
when returning These not only determine the effectiveness of path choice and food source choice,
but have a complex role in the more realistic model with unequal path lengths and unequal food
sources The combination will determine whether food quality or path length predominates in the
colony's choice, and will also determine the size of the emergent search limit. They can be viewed
as supporting a foraging strategy.

A large number of foragers will increase the effectiveness of any algorithm within limits. When
the path lengths and food sources are both unequal, the food quality will predominate the colony’s
choice if there are very few ants. The size of the colony will be the main factor dictating the number
of foragers The requirement for a viable foraging strategy may determine the colony size, though
this may be limited by the environment.

A slow release rate will reduce the effectiveness of the path choice algorithm. However when
unequal food sources are introduced, a slow release rate will result in a large search limit. If too
many ants leave the nest at once, the colony will have already have chosen the nearest food source
before foragers can return from the other source. Even if this source is much richer, the foragers
will not now recruit to it.

The influence ants exert on nestmates will be determined by the recruitment behaviour em-
ployed. There is a great diversity of recruitment behaviour, which we might expect to be the
product of natural selection. The influence exerted by foragers may determine whether the colony
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makes a choice predominantly of path length or food quality, and the size of the search limit.
Foragers of several species have been observed to respond differently to food of different type and
quality, and alter their response according to the state of the colony when starved 11-14,

The behaviour of the food choice algorithm indicates that there is a trade off between accuracy -

and speed of choice of a food source, and that this can be controlled by the influence exerted by
ants. Since this is a product of recruitment behaviour, ant foragers should be able to control this
trade off in response to different food types: they could recruit quickly to short lived food sources
by exerting a high influence, or gain an accurate assessment of the quality of more permanent food
sources by exerting a low influence.

The importance of colony size should be stressed. This will determine the number of foraging
ants, and may also have a large influence on the release rate. These factors will determine the
foraging strategy of the colony.

Slight variations numbers of foragers, individually exhibiting the same behaviour, will produce
different foraging strategies. This might result in colonies of different size exploiting a slightly
different ecological niche, despite the similarity of the individuals. The distinction between similar
individual behaviour and similar colony behaviour is important.

The foraging strategy of the colony will also change as it ages and grows, if the recruitment
behaviour of the foragers remains constant. If the recruitment behaviour of the foragers changes as
the colony grows, the foraging strategy might remain constant. Alternatively, changing recruitment
behaviour might produce a complex progression of foraging strategies as the colony ages.

The search limit illustrates and important point about these algorithms. It is an emergent
feature, which derives from the nature of information exchange. It does not derive from optimal
foraging. Fewell’s observations of Pogonomyrmez occidentalis 1° indicate that the energy budget
of foragers is unlikely to influence their behaviour. A rich food source beyond the search limit of
a colony might be ignored even if it represented the best balance of energy against time, risk or
the energy required in foraging. The colony will not detect this piece of information about the
environment.
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