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Abstract

This paper presents a new strategy for motion planning of
multiple robots as a multi-agent system. The system has a decentralized
configuration. All the robots cannot communicate globally, but some
robots can communicate locally and coordinate to avoid conflicts for
public resources. In such systems, it is difficult for each robot to plan
its motion effectively while considering other robots, because the
robots cannot predict the motion of other robots as an unknown
environment. Therefore, each robot only determines its motion
selfishly while considering a known environment. In the proposed
approach, each robot plans its motion while considering the known
environment and using empirical knowledge. The robot considers its
unknown environment including the other robots in the empirical
knowledge. The Genetic Algorithm is applied to optimize the planning
of the motion of each robot. Through iterations, each robot acquires
knowledge empirically using fuzzy logic, and the system behaves
efficient evolutionary. For an illustration, this paper deals with path
planning of multiple mobile robots and performs simulations.




I. INTRODUCTION

Autonomous robots which perform tasks without human operators are required
in many fields. When an autonomous robot works at its tasks, it is necessary to have
knowledge and to decide its motions by itself. In the conventional robot, human
operators give the robots knowledge in advance in top down manner. However, there
are limitations of knowledge given by human operators and memory of the robots.
Furthermore, in unknown environments, human operators can not give knowledge.
Therefore, the autonomous robots must have adaptation function to unknown
environments and learning function to memorize experiences and utilize them later. Itis
important to utilize both success and failure. It is also important to update the
knowledge. These process proceed in bottom up manner.

For the intelligent control of robots, the hierarchical intelligent control scheme
has been proposed by Shibata et al. (1992, 1993). The scheme has three levels: the
adaptation level, the skill level and the learning level. Knowledge is acquired by results
of adaptation to the environment in bottom up manner and instruction by human
operators. The robot memorizes the knowledge at the learning level. The robot utilize
the knowledge in planning its motion. This paper deals with the learning level of the
autonomous robots. For complex tasks, single autonomous robot can not achieve the
tasks alone because of its functional limitations. In this case, it is necessary to work
cooperatively with other robots.

When many autonomous robots work together at tasks, configuration of the
multi-agent system can be classified into two type. One isa centralized system at which
one master robot exists and other robots obey the master. The other is a decentralized
system in which each robot performs tasks cooperatively. In the centralized system,
the master robot is required to have many functions. If the master robot breaks down,
the task cannot be achieved. On the other hand, in the decentralized system, each robot
has a function. Since plural robots work cooperatively, it is easy to deal with various
tasks. Moreover, if one robot breaks down, other robots can help or replace the broken
robot. Therefore, the decentralized system is superior to the centralized one.
However, it is difficult to achieve the decentralized system, because interaction among
robots influences unfavorably when public resources are limited.

If there is no interaction, each robot has to work optimally for its purpose, so
that the total task should be achieved optimally. That is, each robot should work
selfishly. Or else conflicts among the robots might occur when using a public
resource. The conflicts may cause collisions and deadlock states among the robots in a
local area. In order to avoid conflicts, it is necessary for the robots to communicate
locally at least and to coordinate among themselves. The coordination among the
robots is as important as selfishness. However, if many robots use the same public
resource, the robots have to wait for their orders. In such cases, the waiting time is
considered as a cost and the coordination is not always effective. Moreover, for the
coordination, communication among robots is very important. However,
communication itself is a burden for robots, especially global communication in a
distributed robot system without a supervisor. Without global communication, it
would be difficult to achieve decentralized tasks efficiently. Therefore, it is difficult for
each robot to plan its effective motion while considering unpredictable coordination.
This paper deals with the decentralized multi-agent system. In this system, it is difficult
for each robot to communicate all the other robots globally at the same time.

This paper proposes a new strategy of motion planning for the multi-agent-robot
system which has a decentralized configuration. As assumptions, Every robot cannot
communicate globally at the same time but can locally to avoid conflicts. In this paper,
while planning, every robot uses a common static world model to express a common
environment including public resources. Each robot also uses a dynamic world model
to express an unknown environment including other robots, which is acquired
empirically through learning. The static world model is used for selfish motion
planning of the robot, while the dynamic world model is for considering coordination
with other robots depending not on global communication but experiences.
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For an illustration, this paper deals with path-planning of multiple mobile
robots. When a mobile robot moves from a starting point to a target point, it is
necessary to plan the optimal path or a feasible path for itself by avoiding obstructions
in its way and by minimizing a cost which is a function of time, energy for acceleration
and deceleration and distance. The major problem for path planning of a mobile robot
is how to find a collision-free path from a starting point to a destination. Much research
has been carried out for the path planning of a robot with stationary obstacles.
Modeling of an environment of a robot is one of the key issues for path planning.
Nilson proposed Visibility Graph (VGRAPH) (1969), and Lozano-Perez and Wesley
applied the Visible Graph technique in a configuration space (1979). Brooks proposed
a representation method of free space by means of figures called generalized cones and
applied to a collision-free path planning problem (1983). Noborio et al. applied the
quad tree to produce a path graph (1989). Lee and Park used a neural network to find a
collision-free path for a robot (1991). Habib and Asama proposed the MAKLINK
graphs which are based on a free-link concept to construct available free space within
the robot's environment in terms of a free convex area (1991). The graph is less
complex for searching a collision-free path than other methods, because the numbers of
nodes and links in the graph are less than that in other graphs. Therefore, in this paper,
the graph is used to express the known environment of the robot.
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Moreover, when many robots move in the same working space, it is necessary
for each robot to select the most reasonable path so as to avoid conflicts with other
robots and to minimize the total cost of all robots. If each robot selects its optimal path
selfishly, the conflicts may occur. Previous works use rules that the robot waits for
other robots as coordination to avoid the conflicts (Wang et al., 1991, Yuta et al,,
1991). They did not consider total efficiency of the system, though their method could
avoid the conflicts. However, if many robots pass the same road or point frequently,
the waiting time becomes excessive. Therefore, when multiple mobile robots move in
the same work-space, selection of an optimal path for each robot is not always
effective.

In this paper, the MAKLINK graph is used as a static map to express the
known environment of the robots and the Genetic Algorithm is applied to find out the
reasonable pass. The GA was introduced by Holland (1975). The GAs are inspired by
adaptation in evolving natural systems (Goldberg, 1989, Davis, 1991). Pearce et al.
applied the GA to local robot navigation of a mobile robot (1992) . Shibata et al.
applied the GAs to motion planning of a mobile robot and coordination among multiple
robots hierarchically (1992). In the previous approach, each robot plans multiple paths
while using the first GA and then, a leader robot selects the most reasonable path for
each robot using the second GA. There are assumptions that every robot uses only a
static map of its environment and can communicate every robot at any position.
Therefore, the leader robot can exist. However, in this paper, there is no leader robot
as the decentralized multi-agent-robot system.

On the other hand, a dynamic map is defined to predict other robots' motions
for coordination while planning motions. This dynamic map is acquired empirically
through learning process as shown in Fig. 1. At first, each robot plans a path by the
GA using the static map as the world model. The GA can produce many reasonable
paths since the GA searches multiple points in a search space at the same time. Then,
every robot moves according to the most reasonable path for each robot. The robots
may wait for other robots passing by at a public place as the result of local
communication to avoid a conflict. At this moment, a cost of waiting time occurs.
Each robot memorizes this cost in a dynamic map as an experience while using fuzzy
set proposed by Zadeh (1965). After the robots arrive at the target positions, each
robot produces the dynamic map depending on time, the number of nodes, and the cost
as an empirical map. In this paper, only the waiting time is considered in the dynamic
map. This process is defined as one iteration in the learning process and the dynamic
map is used as acquired knowledge of the dynamic environment. From the second
iteration, each robot plans path by GA using the static map as a fixed world model and
the dynamic map as a predicted dynamic world model depending on experience. The
dynamic map is modified through iterative learning process. This learning process isa
bottom up approach for primitive knowledge acquisition.

Simulations are carried out to show the effectiveness of the proposed approach.
Using the proposed approach, each robot gradually acquires experience where and
when the public resources are crowded through iterative learning process. Then,
depending on the experience, each robot becomes able to plan reasonable path.

II LEARNING SCHEME FOR MOBILE ROBOTS

A. Hierarchical intelligent control of a mobile robot

For mobile robots, basic functions are planner, navigator, servo controller and
sensory system. Hierarchical intelligent control is applied to the mobile robot. In
hierarchical intelligent control, the planner corresponds to the learning level, the
navigator does the skill level, and the servo controller does the adaptation level. The
planner plans paths depending on aims of tasks. The navigator navigates the robot on
the planned path while avoiding unexpected obstacles. This paper deals with the path
planning at the planner.
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B. Learning scheme

Figure 1 illustrates a learning scheme proposed in this paper. At first, each
robot plans a path by the GA using the static map as the world model. The GA
produces many reasonable paths since the GA searches multiple points in a search
space at the same time. Then, every robot moves according to the most reasonable path
for each robot. The robots may wait for other robots passing by at a public place as the
result of local communication to avoid a conflict. At this moment, a cost of waiting
time occurs. Each robot memorizes this cost in a dynamic map as an experience while
using fuzzy set. After the robots arrive at the target positions, each robot produces the
dynamic map depending on time, the number of nodes, and cost as an empirical map.
This process is defined as one iteration in the learning process and the dynamic map is
used as acquired knowledge of the dynamic environment.

From the second iteration, each robot plans the path by the GA using both the
static map as a fixed world model and the dynamic map as a predicted world model
depending on experience. The dynamic map is modified through iterative learning
process. This learning process is a bottom up approach for primitive knowledge
acquisition

C. Assumptions

The major problem for path planning of a mobile robot is how to find a
collision-free path from a starting point to a destination. Much research has been
carried out for the path planning of a robot with stationary obstacles. Modeling of an
environment of a robot is one of the key issues for path planning. Habib and Asama
proposed the MAKLINK graphs which are based on a free-link concept to construct
available free space within the robot's environment in terms of a free convex area. The
graph is less complex for searching a collision-free path than other methods, because
the numbers of nodes and links in the graph are less than that in other graphs.

Therefore, the graph is used to express the known environment of the robot with the

following assumptions:

1) The polyhedral obstacles are orthogonal prisms whose heights are all parallel to Z
axis, and the entire path lies entirely in a horizontal plane containing X and Y, and
the given obstacles will intersect this plane in a collection of polygonal obstacles.

2) To ensure path is not too close to any of the obstacles, the dimension of the robot is
represented by a point, and the boundaries of obstacles are expanded accordingly by
the maximum distance at the robot's cross section plus a minimum distance required
for proper sensing.

MO e
Fig. 2 Robot's environment with
stationary obstacles and free-convex

areas

Fig. 3 A graph for a static map of the
robot's environment
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A simple model of the robot's environment is used. In the model, all obstacles
in the environment are represented by a set of vertices to describe each polygonal
obstacle. The constructed model represents the knowledge of the robot's environment
in terms of a static map. This static map is given to each robot in the same space. An
internal representation of the world is built through the map manager as an internal map
which is suitable to be used for free space structuring and preparing the required
information for path-planning.

D. Static map and rules for every robot

The MAKLINK is based on a free-link concept to construct the available free
space between obstacles within an environment of mobile robots in terms of a free
convex area. The free-link represents a line whose two ends are either corner of two
polygonal obstacles, or one of them is a polygonal corner and other is a point on a
working space boundary wall. A connection among the corners of the same obstacle is
also edge between two adjacent free-convex areas. A free-link should not intersect with
any edge of the obstacles within the robots’ environment. The boundary of each free-
convex area to be constructed will have at least two free-links as apart of its total
number of edges. After calculating all possible free-links, each midpoint of each free-
link is used as a node in the graph. The midpoints in the same free-convex area are
connected to represent links in the graph.

In order to decide points as nodes in the graph, the free-convex areas are used
as public resources. Figure 2 shows an example of robots' environment with some
stationary obstacles, in which the free-convex areas with free-links are determined and
each free-convex area is numbered. Figure 3 shows a graph in which each node is
numbered and length of each link is used to calculate fitness of path in Genetic
Algorithms (GAs). Rules to avoid conflicts are defined as follows:

3) Only one robot can enter in a free-convex area. Other robots which would like to
enter the same free-convex area have to wait at the point on the edge of the area.

4) Plural robots can wait at the same point on the edge of the free-convex area.

5) In order to avoid deadlock states, if some robots arrive at the same free-convex area,
the robot which exists the smallest number of nodes has priority to enter the area.

E. Dynamic map for each robot

When a robot waits for other robots passing by a free-convex area, waiting time
on time ¢ is considered as a cost for the robot. The robot regards the cost at the free-
convex area as an experience. The experience is memorized in a dynamic map while
using fuzzy expressions in this paper. Figure 4 shows the dynamic map to express
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world models and for the robot to consider experiences in planning. Memorized data is
the amount of the cost with regard to waiting time, when the robot waited, and at which
free-convex area. If a crisp value is used for expressing the cost at a time, the cost
changes drastically in the dynamic map (Fig. 5 (a)). For example, the robot waits from
time #; to #7+a as in Fig. 5 (a), the cost is considered from 7;7-a to f7+a as in Fig. 5 (b).

0 t<t1-a
Chpew(t)=4 t-t;+a t1-ast< (g
-t+t;j+a t1<t< ) +2 (1)
tj+acst

Cn is the cost function of time at the node n.
New data from ¢;-a to #;+a is added to the dynamic map multiplied with a learning rate

o, while old data from #;-a to 77+a is forgotten with an oblivion rate B as follows:

Cn(t) = aCnpew(t) + BCnola(t) tj-ast<tj+a (2)

Through this process, the dynamic map is modified and the experience is accumulated
as the learning. The next chapter describes the way of using the MAKLINK graph in
the GAs.

III MOTION PLANNING BY GENETIC ALGORITHM

Genetic Algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search
algorithm with some of the innovative flair of human problem solving. An occasional
new part is tried for good measure avoiding local minima. While randomized, GAs are
no simple random walk. They efficiently exploit historical information to speculate on
new search points with expected improved performance.

In the first step, each robot plans its optimal paths for moving selfishly. At this
time, each robot uses the GA with the static map of the known environment which is
expressed by using nodes and links in the graph.(Fig. 3). Then, each robot moves
along the planned path. At some free-convex areas, the robot may wait for other
robots passing by as the result of local coordination and memorizes the cost of waiting
time as experiences. For the robot, the other robots are considered as factors of the
unknown environment. This process is regarded as the first iteration. After the first
iteration, each robot plans paths while using the static map and the dynamic map to
predict local coordination in the dynamic environment. Through iterations, each robot
acquires approximate knowledge about how and when public resources are often used.
Behavior of the system is evaluated by the total cost with regard to waiting time and
distances resulting from detours.

A. Basis of genetic algorithms

GAs have traditionally three operations to abstract and rigorously explain the
adaptive process of natural systems as follows:

(1) Selection operation,

(2) Crossover operation,

(3) Mutation operation.

The selection process is an operation to select the survival in a set of candidate
strings. In this process, the fitness value is calculated for each candidate string by
using a fitness function which depends on a goal for searching problems. According
to the fitness value, the selection rate is determined for the present candidate strings,
and the survival is selected in any rate depending on the selection rate.

The crossover process is a reform operation for the survival candidates. In
natural system, a set of creatures creates a new set of the next generation by crossing
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among the creatures. In the same way, the crossover process is performed by
exchanging pieces of sirings using information of old strings. The pieces are crossed
in couples of strings selected randomly. The mutation process is held to escape the
local minima in search space in the artificial genetic approach. The calculation is
stopped when the generation is up.

B. Coding method of path for string

Genetic Algorithms for the path-planning of each robot is referred to as GA1.
In the GA1, a path for a mobile robot is encoded based on the order of via points.
Each robot has a starting point and a target point in the graph under the assumption that
each robot passes each point only once or not at all. In Fig. 3, each node has a
number. The nodes in the graph are used to encode a path as a string which is
expressed by the order of the numbers, for example, ‘0-1-2-6-9-11-15-17-22-25-26."
In this string, '0' is the start point and '26' is the target point for a2 mobile robot. These
points are selected randomly at first, while adjacent numbers must be connected with a
link in the graph. Since order-based strings are used, specialized operations of
crossover and mutation are used.

C. Calculation of fitness using static map and dynamic map

Distance of the path is indicated by a string used for the fitness of each string.
Therefore, as the distance decreases, the fitness increases. To calculate the fitness, the
length of the link between numbers in the string and the estimated cost at the public
resources are calculated as followings:

String: 0-1-2-6-9-11-15-17-22-25-26
Fitness in GA1:
Fi(k) =dp-1 +d1-2 + dy.g+e°°+d2526+C1+C2+C3+22+C19 3)

where F1(k) is the fitness value of the kth string and di-j is distance between nodes {
and j, which is equal to length of the link in the static map. The notation Cp, is the
estimated cost at nth public resource expressed in the dynamic map. Since the Cp
depends on time, the search space is huge and the conventional graph search
techniques cannot be simply applied to this search problem. However, the proposed
approach can be easily applied while considering the cost Cp in the scalar fitness
function. Since the GA searches multiple points in the search space at the same time,
the GA can obtain the optimal solution and feasible solutions. The robot may use the
optimal path for itself but other paths are used in the next iteration, because the
dynamic map would have changed through iteration and the fitness of the same string
would vary with the dynamic map.
To select strings, following equation is defined.

N

z f1(!)
£, >i=l
1® N

4
N is the total number of strings.

D. Crossover and mutation

In the crossover, a string which has an efficient fitness value is randomly
selected as a parent, and a number in the string is also randomly selected at first. Then,
one more string which also has an efficient fitness value is selected as a second parent
at random. If the second parent has the same number selected in the first parent, each
string exchanges the part of strings after that number. If not, another string is selected
as the second parent, and the same operation is repeated. The followings are examples:

Parent 1: 0-1-2-6-9-11-15-17-22-25-2
Parent 2: 0-4-8-10-15-20-23-26 (5)
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Each parent has the point '15' and exchanges the part of each string,

Child 1: 0-1-2-6-9-11-15-20-23-26
Child 2: 0-4-8-10-15-17-22-25-26 (6)

After the crossover, the children are checked whether each string has same numbers.
If so, a part of the string between the same numbers is cut off as follows:

Child 3: 0-1-2-6-9-11-15-10-7-11-17-22-25-26 @))

after the cut off operation
Child 3': 0-1-2-6-9-11-17-22-25-26 (8)

In the mutation, a position in each string is selected at random based on the
probability of mutation which is low. Then, the number of nodes is selected randomly
for following positions which are connected sequentially.

IV SIMULATION RESULTS

A. Selfish planning by Genetic Algorithm with a static map

The GA1 is applied to the planning of collision-free paths of a single mobile
robot as selfish-planning in a space with stationary obstacles. The simulation was
carried out to show the effectiveness of the proposed approach. As an assumption,
there was one mobile robot in the work space. Therefore, conflicts can not happen,
The search space of the graph was very large. In the simulation, the starting point is
'0" and the goal point is '26' in Fig. 3 and the size of the search space is about
620,000. The GA1 used 50 strings for the population, and calculated 100 generations
with 80% probability of crossover and 20% probability of mutation for each string. 50
cases of random parameters were investigated. The GA1 succeeded in obtaining the
optimal path at the rate of 22% and the feasible path of the rest. Figure 6 shows the
relationship of the best fitness of the string and generation. The robot succeeded in
finding out the optimal path and feasible paths for itself while using the static map.

550
- Initial distance = 90
Shortest distance = 60 (Optimal)

2
b 0
! Generation 100 Iterations 50
Fig. 6 Simulation results of selfish- Fig. 7 The relationship between iteration
planning by using GA1. and the total cost of waiting time and

distance resulting from detours.

B. Evolution and coordinative behavior of multiple robots

The simulation was carried out with 10 robots in the work space, and all of the
robots could not communicate with each other globally at the same time but could
locally. At first, each robot planned its path selfishly only using the static map and then
moved along with their selfish path. During the motion, conflicts occurred at the free
convex areas and the robots waited for other robots to pass by according to the rule of
local coordination. In order to evaluate system behavior, costs of robots are summed
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as total cost of the system. However, this total cost is not used for each robot. Figure
7 shows the relationship between the total cost of the system and iterations. At the first
iteration, the total cost with regard to waiting time was excessive as the result. Each
robot memorized the cost with information of how, when, and at which free convex
area in the dynamic map the cost occurred, while using equations (1) and (2).

In the second iteration, each robot planned its path by the GA1 using the static
map and the created dynamic map. In the second iteration, the strings were not
generated at random as in the first generation, but the strings which were created in the
last generation, at the previous iteration, were used as the first generation of the second
iteration. Because the strings already had efficient fitness values with respect to the
distance of the paths represented in the static map. The fitness values of the strings
vary according to the each dynamic map. As a result of the second iteration, the total
cost of all the robots was reduced. This is because some robots select detour with
respect to length to avoid passing crowded area.

Moreover, the multiple robot system iterated the process, while each robot
learned the dynamic environment. After several decades of iterations, the total cost was
reduced, although global communication was not used. This is because each robot
considers interactions with other robots while planning, using the dynamic map. Table
1 shows the obtained path. The proposed strategy succeeded in decreasing the total
cost without global communication. If there were a supervisor, the paths of the least
cost in the iteration would be used for moving. Though the supervisor was not exist,
the robots behave efficiently after iterations because of its learning ability.

The result from the proposed approach is compared with results from two
situations. One is that every robot selects the shortest path for itself as selfish planning.
The other is that every robot can communicate each other before moving and there is a
leader robot. Shibata et al. have shown hierarchical path planning approach while
using two kind of GA. In the previous approach, each robot plans multiple paths while
using the first GA and then, a leader robot selects the most reasonable path for each
robot using the second GA. These planning are performed once before moving (off-
line planning). Each cost is normalized by the cost resulting from selfish planning.
Table 2 shows the comparison of the results. Though the proposed approach in this
paper does not use global communication, the result is quite reasonable. Therefore, the
leaning function is efficient for the autonomous robot to plan its motion in a dynamic
environment.

Table 1 Planned paths of ten robots after 50 iterations

Robot Start Goal Optimal Path for itself Planned Path
1 0 26 0-1-2-6-9-11-15-20-23-26 0-1-2-6-9-11-15-20-23-26
2 26 0 26-23-20-15-11-9-6-2-1-0 26-24-21-13-12-5-2-1-0
3 22 12 22-17-111-14-12 22-25-23-20-16-13-12
4 12 22 12-14-11-17-22 12-13-16-20-23-25-22
5 5 19 5-6-9-11-17-19 5-6-9-11-17-19
6 19 5 19-17-11-9-6-5 19-17-11-9-6-5
7 4 21 4-8-10-15-16-21 4-8-18-19-22-25-23-24-21
8 21 4 21-16-15-10-8-4 21-24-23-25-22-19-18-8-4
9 18 13 18-8-10-11-14-13 18-19-17-11-14-13
10 13 18 13-14-11-10-8-18 13-16-15-17-19-18

Table 2 Comparison of results of the total cost of the multi-agent-robot system

No. Situation of the system result
1 All robots move selfishly 1.00
2 All robots can communicate 0.39
3 Coordinative behavior through learning 0.36

(Robots communicate locally to solve conflicts)
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V CONCLUSIONS

This paper proposed a new strategy for the coordinative motion planning for
multi-agent systems. The robot in the system uses the Genetic Algorithm (GA) to
search the optimal solution and feasible solutions of motion. While planning, each
robot uses the static map of the known environment and the dynamic map of the
dynamic environment. The dynamic map is modified by experiences through learning.
The experiences are expressed by the fuzzy set in the dynamic map. Though the robots
only communicate in a local area for coordination in order to avoid conflicts, the
behavior of the system becomes efficient evolutionary through iterative learning.
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