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Abstract

An algorithm is described that tracks the amount and distribution of
mutual knowledge within a population of interacting individuals. The
dynamics of the individuals are modified by their knowledge of other
individuals, thus producing emergent collective behavior of the population.
The algorithm was designed for populations of minimally knowledgeable
objects such as simple animals, but it also provides a conceptual framework
for describing the dynamics of populations of inanimate objects. The use of
the amount and distribution of knowledge as a dynamical principle, and its
relationship to information theory and other dynamical theories, are
presented.

Introduction

This work was motivated by recent progress on individual-based ecosystems
(DeAngelis, 1992) and collective behavior of populations of simple objects (Langton,
1987). The central challenge in such simulations is to carry a system of interacting
individuals forward in time, in order to assess the effects of parameter variations.
These problems are sometimes described as information-driven: the size of a tractable
problem and the speed of the algorithm are limited by the enormous amounts of
information that must be processed.

The approach adopted here is to focus on knowledge among the individuals of the
population. We have a general concept of “knowing,” and could say that each
individual in a population in some sense “knows” about other individuals. Clearly,
individual dynamics will depend strongly on what (or who) that individual knows.

In this work, we present an algorithm (abbreviated KtA) that tracks the amount
and distribution of knowledge among identical individuals comprising an isolated
population, and a dynamical principle for generating the emergent collective behavior
of the population dependent on that knowledge. We do not track the knowledge itself,
only a quantity giving the amount and distribution of that knowledge. This quantity is
precisely defined in terms of probabilities, hence provides a link to classical and
quantum dynamics, statistical mechanics, information theory, and knowledge
representation. The KtA approximates the basic dynamics of knowledge in real
systems, including sharing and various loss mechanisms.

Knowledge in a Population of Individuals

We begin by assuming that the individuals in the population are capable of
carrying along with them a quantity of “knowledge” about other individuals. We do
not require individuals to be sufficiently talented to access and process their
knowledge in any manner resembling intelligence; the individuals may be nothing
more than simple devices capable of only a small number of reflexive actions.

We assume that the individuals interact in pairs according to some specified
physical dynamics. If these interactions are infrequent and local, they resemble
collisions, and the model is connectionist (Farmer, 1990). If the interactions are
continuous and nonlocal, they resemble long-range forces. When an interaction
occurs, two things happen: (1) the interacting partners mutually share a fraction of the




knowledge they carry; (2) all other individuals lose a fraction of the knowledge their
knowledge of the interacting partners.

Knowledge sharing due to interaction is intuitively obvious: Assume that
individuals {A,B,C} initially have no knowledge of each other; their behavior is
completely independent of each other. After an {A,B} interaction, individuals {A}
and {B} know about each other, but neither knows anything yet about {C}. After a
{B,C} interaction, individuals {B} and {C} know about each other, and therefore,
{C} knows something about {A}, although {A} knows nothing yet about {C}. This
process leads to an expansion and general increase of knowledge. While the process is
similar to diffusion, it has no direct analog in statistical mechanics.

Knowledge loss due to interaction is not intuitively obvious. The following
argument demonstrates the origin of this decrease: In any interaction, both parmers
are inevitably and permanently altered (this must be so, or else no interaction took
place), indicated by {A,B }—>{A',B'}. Next, {B'} and {C} interact: {B',C}—
>{B",C'}. However, since {A'} has no means to know how {B'} was altered by {C}
during this event, it knows less about {B"} than it did about {B'}. With the passage of
more and more time, {A} has less and less knowledge of {B} because {A} has no
knowledge of {B}’s other interactions. We are familiar with this process in a social
context; with the passage of time, we tend to know less and less about a lost friend.
This process clearly leads to a decrease in knowledge, and while it bears some
similarity to spontaneous decay and dissipative processes, there is again no direct
analog in statistical mechanics.

There are, in addition, other causes of knowledge alteration: an individual may
simply forget, or the knowledge may get corrupted with other knowledge. In the KtA
algorithm to be described in the next section, we will include only the two
mechanisms described above: gain through sharing and externally induced loss.

The dynamics of the individuals clearly depend on their mutual knowledge. If the
mutual knowledge of the individuals in the population is zero, they all act
independently and there is no collective dynamics. If the mutual knowledge is high—
most individuals know a great deal about most other individuals—the population is
strongly interacting, and exhibits collective behavior. In the limit that the mutual
knowledge is total (everyone knows everything about everyone else), the population
is fully connected; it behaves like a rigid body. In this case an effect on one individual
is fully felt by all members of the population.

The Knowledge-Tracking Algorithm (KtA)
The foregoing ideas are implemented in a knowledge-tracking algorithm (KtA)
as follows: For a population of N individuals, we define an NxN matrix K; the matrix

element Kjj numerically represents how much individual {i} “knows” about some
property of individual {j}. The Kjj have the constraints listed in Table 1.

Table 1—Constraints on the KtA matrix elements

Self knowledge K;=1 Every individual always knows everything about itself.

Mutual knowledge 0<K ;<1 Individuals know between nothing and everything
(inclusive) about all other individuals.

Each row in the matrix represents what one individual knows about all other
individuals (at one generation). Each column represents what all other individuals
know about one individual. The principal diagonal represents what each individual
knows about itself (always =1).

The matrix K evolves as follows: In an interaction {i,j}, the matrix element at
generation n is converted according to a rule into the corresponding matrix element
for generation n+1: Kij(n) —>Kij(n+1). The rule has the form listed in Table 2.
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Table 2—Form of the KtA transformation rules

Interacting individuals  Kjq(n+1) = Kjq(n) + flKjqm)] Interacting individuals mutually
K {n+1) = K: (n) + fK; ;(n)] acquire some of their partners’
14 b 1q Knowled
f(x) = increasing function of x owledge
g=1..N
All other individnals in(n+1) = g[in(n)] All pther individuals lose some of
qu(n+1) = g[qu(n)] their knowledge of the interacting
g(x) = decreasing function of x ~ PArtners
g=1...(#,j)..N

The mechanics of the KtA matrix transformation is visualized as follows: An
{i,j} interaction causes rows iand j to be positively mixed (vector addition). Columns
i and j (except the matrix elements involving the interacting partners) are decreased
equally. Any matrix element that increases to Kj;(n)>1 is automatically truncated to
Kij (n)=1, and any element that may fall below Kij(n)<0 is held at Kij (n)=0. The
matrix diagonal is always unity, Kjj(n)=1.

Several lumped descriptors of the matrix K are useful. The sum of elements in a
row represents the total knowledge held by individual {i}:

K;(n) = = Kij(n)

The sum of all matrix elements is the total knowledge in the population:

K@) =% Kj(n) = ZIE] Kij(n).
The Linear Symmetric Algorithm

Within the constraints given in the previous section, a wide variety of
transformation rules is possible. The simplest, and probably the most reasonable
physically, is to assume that during interaction each partner acquires a fraction (a) of
the knowledge of the other partner, and all individuals other than the interacting

partners lose a fraction (b) of their knowledge of both partners. The matrix
transformation effected by this algorithm is shown explicitly:

K1 (1-b) Ky; (1-b) Klj Kin
Kﬂ-!-aKjl K K1j+aKﬂ KiN+aKjN
Kj 1+ak; Kji-l-aK.ii K._]_1 KjN+aKiN
K1 (1-b) Kpy; (1-b) KNj Knn

where it should be remembered that Kj;=1 always and that all matrix elements are
truncated to 1. This rule is linear and symmetric between collision partmers. The
algorithm is effected by performing this matrix transformation repeatedly. For
example, consider four individuals {A,B,C,D} starting with only self-knowledge
(Kij=0j). If they interact in the sequence (B,C) (A,B) (C,D) (B,D), the matrix evolves
as shown here. Note that Kjj are polynomials of lower degree than the generation 1.
Generation n—Intereracting pairs

1—(B,C)—2——AB)}—3 (CD) 4 (B.,D}
{10,000 {1,00,0) {1, aa20} {1, a(l-b)a2,0} {1, (-ba, (I-b)%2,0}
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Properties of the Algorithm

The matrix K is not necessarily symmetric. If K is symmetric, each individual
knows as much about another individual as the other knows about the first. But for
large values of a or large number of iterations, significant asymmetries are generated,
even starting from a symmetric initial matrix. Physically, this means that individual
{i} may know more (or less) about individual {j} than {j} knows about {i}.

The diffusive nature of the KtA is illustrated in Fig. 1, in which we have plotted
the non-zero matrix elements Kjj(n) as white squares. Initially, a population of 30
individuals with no knowledge of each other was established. The only non-zero
matrix elements were the diagonal Kji(0)=1. At successive generations, the linear,
symmetric algorithm with a=0.5, b=0.5 was applied to the population, allowing only
nearest neighbors to share knowledge. After 30 generations, the diagonal has
“diffused” into a broad band; each individual knows about several others within its
immediate neighborhood, but knows nothing of more distant individuals. After 300
generations the matrix has equilibrated, and never diffuses beyond the ragged
diagonal band. This example also illustrates the fact that knowledge “islands™ can
occur, and exceptional individuals can be produced.
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Figure 1—Three frames from a sequence showing the evolution of the matrix
elements Kjj from initialization to equilibration.

At large times, populations approach an equilibrium total knowledge Ke. Any
initial matrix K is gradually transformed into a matrix with K(n—>large)=Ke. The
KtA is therefore a learning algorithm. Figure 2 shows K(n) for a population of 20
individuals that evolved according to the linear symmetric algorithm with a=1, b=0.1.
Initially the individuals were independent, and the total knowledge was 20. As the
individuals interacted, their mutual knowledge increased, then reached an equilibrium
value Kg slightly below the maximum possible (400). Decreasing the value of a
causes the learning transient to be slower. Increasing the value of b causes the
equilibrium value Ke to be lower. At equilibrium, the total knowledge K(n) fluctuates
chaotically around its equilibrium value Ke. The magnitude of these fluctuations is
smaller in a population with a larger number N of individuals.

400

Figure 2 —Growth of the total
knowledge K following
initialization of a
population of 20
mdividuals with zero
mutual knowledge.
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Example 1: Imitation

This example implements a population of black and white individuals in a 1-
dimensional space. The dynamics allows individuals to interact only with their
nearest neighbors and to adopt the color of the neighbor if the individual has a
specified knowledge of that neighbor. This algorithm was implemented per Table 3.

Table 3—Rules for the Imitation KtA

Initial configurations are specified arbitrarily.

Interactions are implemented by selecting one partner {i} at random. The other partner is the
nearest neighbor, either {i-1} or {i+1}, with equal probability.

‘When an interaction occurs, the matrix K is updated according to the linear symmetric KtA given
above, using fixed values of a and b. Then each partner searches all other individuals to identify the
individual about which it knows the most (maximum Kjg, Kjg). If more than one individual is thereby
identified, one is selected randomly from among those. Then, if Kmin<Kiq,qu<Kmax each partner
assumes the color of {q}; otherwise they retain their previous colors.

Figure 3 presents typical results obtained for a population of 20 individuals
evolving according to Table 3, with a=1, b=0.5, Kp;;=0.5, Kpa¢=1. To produce these
data, the K matrix was first evolved for sufficient time to have achieved an
equilibrium configuration (it reached Ke=0.7). Then the initial population was colored
at random, and allowed to evolve for 200 (or more) generations. The evolution of the
population was represented by plotting the color of the 20 individuals (vertically) vs
generation. From a large set of results, we have selected three typical panels to
include in Fig. 3.

The following typical collective behaviors emerge from these simulations: The
population tends to fragment into groups of similar color which persist for some time
but then give way to other groups. Eventually the population is completely converted
to one color, either black or white, with equal probability. Once uniformity is
achieved, the population is stable: no further changes occur. The final color, how long
it takes to achieve stability, and any details about the transient groups, are completely
unpredictable from the initial configuration. We emphasize that the dynamics of this
KtA are completely deterministic, except that the sequence of collision partners is
selected randomly.

20

15

T

0 50 i00 150 200
GENERATION
Figure 3—Evolution of a population of 20 individuals interacting according to the rules defined in
Table 3. For each of the three panels, the population is restarted with random configuration.
The final configuration is always uniformly one color (panel 3 was completed at later
times), but that color is unpredictable from the initial configuration.
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Example 2: Pursuit-and-Flight

This example implements a population of male and/or female individuals moving
within a 2-dimensional box. The dynamics allows some individuals to be atiracted to
or repelled by other individuals. The model encompasses pursuit and capture,
avoidance, clustering, flocking, swarming, stalemating, and a variety of other
collective phenomena commonly seen in nature. In addition, upon interaction, the sex
of the individuals may be altered, providing the possibility of spatial/sexual coupling.

This example was implemented as described in Table 4.

Table 4—Rules for the Pursuii-And-Flight KtA

Initial configurations are specified arbitrarily.
The positions of individuals vary in time according to

x;(tAL) = xi(t) + Zj Kij (Sij /Dij) Xij(t) Ax
yi(tHAD = (0 + K (SiyDip) Y30 Ay

The direction cosines are

Xjj= (i x/Dij
Yij= Oi-¥/Dij

and the distances between individuals are
Dyj= (- 52+ G- ¥ -

and Ax,Ay are constants.
The state of each individual contains two quantities: sex and position.
Kj; represents the individuals’ knowledge of sex of other individuals. Sex-changing interactions

occur only when one individual approaches another within the sum of their sizes (a “collision™):
Ixi-XjISZL and lyi-}'jIS.ZL ,

where L is arbitrarily specified. When this occurs, the matrix K is updated according to the linear
symmetric KtA with parameters a,b, and the sexes of partners {i}, {j} are changed with probability b.
Sjj accounts for the attraction and/or repulsion between sexes. It is selected to be one of the
following four arbitrary values{Smm, Syfs Sfm» Sgf) -
The factor (Sij /Dj;) represents a pseudoforce that produces motion.

Individuals approaching the boundary of the box are either repositioned a small distance within the
box, or reflected from the wall. -

The direction cosines serve to orient the attraction or repulsion toward the
interaction partners. The factor Sij/Dyj; in the equations of motion provides a range on
the interactions. This factor is quite arbitrary, and was selected mainly to produce
interesting motions. It results in strong clustering of individuals and the ability of an
individual to be isolated at some distance from the group. We could also have phrased
this term as a distance-dependent knowledge K'jj updated at each time step.

The four values {Smm» Smf> Stm» Sge} set the qualitative nature of the collective
motion. A large negative value for one of these parameters means that individuals of
the second sex will be strongly attracted to individuals of the first sex. A large
positive value will produce strong corresponding repulsion. A value of zero means
that there will be no influence on the motion. A set found to be particularly interesting
is {-0.1,1,-1,-0.1}, which produces motion in which males chase females, females flee
males, and there is a weak male-male and female-female attraction. We emphasize
that the specific dynamics of this KtA are arbitrary; the purpose is to illustrate the .Y
effects of mutual knowledge in driving the population behavior. In fact, this form of
the KtA produces no motion, except by virtue of mutual knowledge.




The basic behavior of populations evolving according the Table 4 is shown in
Fig. 4. The population consists of 15 individuals, about half males (circle with dot)
and the rest females (open circle). Sex changes are not permitted (b=0). The
parameters S={-0.1,1,-1,-0.1} produce the pursuit/flight behavior. In Fig. 4(A), with
the mutual knowledge low, the males wander about independently, chasing whatever
fernale happens to be close. In Fig. 4(B), when the mutual knowledge is high, a group
of males starts near the center and pursues a group of females in the SE corner. The
corner encounter is violent, with both males and females flying in and out of the
corner reminiscent of a fight. Eventually the females escape and race up the E wall,
the males in fast pursuit. Just as they approach the NE corner, the males break to the
left to chase a female that has bolted for the NW corner. As the female(s) move down
the W wall, the males turn in pursuit, then turn again as the females dash for the SW
corner again. The groups constantly split up and reform. Visually, the population
gives the distinct appearance of deliberate activity.

Figure 4—Effects of knowledge on the collective motion. (A) Low mutual knowledge; (B) High
mutual knowledge. These motions are described more completely in the text.

By adjusting the values of a, b, and S, a variety of different collective motions
can be generated. For instance, setting a=1, b=0, and $={0,0.3,-0.7,0} in a population
of two males and two females produces two tightly coupled male-female pairs that
race around the box like scurrying mice. Infrequently, the mice collide, the
individuals are scattered and mixed but quickly reform into two new mice which
continue their scurrying. With a=1, b=0, and S={-1,1,1,-1}, a large population
behaves like two swarms, reminiscent of gnats; the swarms drift around the box,
constantly shifting positions to stay as far away from each other as possible. Still
another class of behavior is found by setting 0<Sfm<Smf, which makes possible the
creation of quasi-stable “crystals.” For instance, 5={0,3,1,0} in a population of 4
males and 4 females can produce a pattern with one female in each corner, three of
the males stably held near the center, and the fourth male stably positioned off-center
toward one edge of the box. These patterns are metastable—they are hard to produce
without slowing varying S as the pattern evolves, and if perturbed, the crystals have a
tendency to melt or shatter, moving randomly like a liquid thereafter.

The effects of including sex change (b0) are spectacular. Because the motions
are highly dependent on the relative sexes, a single sex change can cause the entire
population to suddenly radically alter its motion, much like fish schools suddenly
reversing direction. The biggest effect occurs when there is no male-male or female-
female interaction: if the population is initially all the same sex, it cannot start
moving, and if a moving population somehow achieves unisexuality, it stops
completely and permanently.




Physical Meaning of the Algorithm

Knowledge, in the conventional use of the word, implies a test: we “know”
something if we can give the correct answer to a question about that something. We
imagine asking individual {i} for some statement about some property of individual
{j}. If {i} has knowledge of the state of {j}, then {i} gives the correct answer;
otherwise it cannot. In adapting this to the KtA, we say that if {i} has knowledge Kj;
of {j} then {i} will have probability py; of giving the correct answer.

We specify the relationship between knowledge and probability as follows:
Assume that the population is comprised of a set of identical individuals, each with a
state variable that can assume any one of G possible values. If individual {i} knows
nothing of individual {j}, {i} has the random probability 1/G of correctly identifying
the state of {j}. If, however, {i} has knowledge Kjj of {j}, this probability is

py=g+[1- &Ky

The picture here is that {j} is in only one of the G states accessible to it, and {i}
makes successive (randomly chosen) guesses of which state. {i} correctly guesses the
state of {j} only a fraction p;; of the time.

The property of indivi(iual {j} symbolized by the matrix element Kj; is quite
arbitrary: it can be location, size, age, sex, color, condition, or any other property. For
each property we wish to track, we specify a separate matrix K. Intrinsic to these
definitions is the idea that the individuals have a specified state. K represents
knowledge of the states of the individuals by all other individuals.

While the basic physical dynamics provides for all possible motions, the KtA
will enable us to determine the actual motion. This is effected by introducing into the
individual dynamics the probabilities that the individuals know the states of other
individuals, thereby providing a weighted response of the individual to all others.

To clarify these ideas with an example, consider a collection of objects whose
dynamical variables {x;} satisfy the equation of motion

dx;
d_tl =ij(xi,xj).

This relation assumes that all objects in the population are simple and they have no
uncertainty about the states of the other objects. If the objects are sufficiently complex
that they might be uncertain about the other objects, we replace this with the equation

dxi
E T ij'(xi,xj,Pij)
plus the equations for p;; (given in terms of K;; above).

What we have done here is to factor the dynamical equations into two sets of
equations, one set (as above) that weights individual behavior according to how much
the individual knows about its interacting partners, and another set (the KtA) that
describes the dynamics of the knowledge itself. Both sets of equations are written
from physically reasonable models.

The KtA provides a hybrid dynamics specifically designed for populations of
objects that have sufficient internal complexity to have some knowledge of other
objects and to take actions based on that knowledge. It is most appropriately applied
to simple animal behavior such as schooling or flocking, in which the full complexity
of the organism is not necessary to produce the collective behavior. Whether the KtA
can be meaningfully extended to populations of simple inanimate objects such as
grains of sand that have no capacity for storing and processing knowledge in the
conventional sense is a subtle question about physics that is as yet unanswered.
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Relation to Information Theory

In the classical definition of information (Brillouin, 1962), we assume we have a
system with R possible configurations. Initially, we have no kmowledge which
configuration the system actually has. If we subsequently acquire an amount of
information I = ¢ In(R/R"), where c is a units constant, we would infer that the system
has only R’ possible configurations.

In order to calculate R/R’, we note that the reciprocal of p;;

1
o e,
*5 P TH G

is the number of states that {i} would infer that {j} has available to it. The total
number of configurations of the population, inferred by {i}, is then Rj = ITj gjj, Thus,
the information Ii(t) associated with a transition from an initial knowledge I%ij(O) to
knowledge Kj;(t) at time t will be

[R;(0)] _
Iit=¢ In_Ri(f):' = Zjlij(t)
where )
e 1+ (G-I)Kij (t)
Ijj t)=c ln_1 3 (G-I)Kij (O)} "

represents the self (j=i) and mutual (j#i) information. We can invert this to obtain

1 Iii(t)/c 1
K= s+ K40 —
which gives the increase in knowledge Kjj due to information Ijj. The exponential
relationship is a natural result of mapping an additive space into a multiplicative one.

Relation to Other Work

This work is very closely related to harmony theory (Smolensky, 1989), which is
built on a paradigm of activation of knowledge atoms and their assembly into context-
sensitive schemata. Both assembly and inference (which is the completion of missing
parts) are achieved by finding maximally self-consistent states of the system. The
theory leads inevitably to the definition of a harmony function H, and its exponential
connection with probability: p ~ exp(H/kT). Thus, we find linear correspondence
between probability and knowledge, and between information and harmony.

This work also draws strongly from the ideas of Kampis (1991), who
emphasizes the limitations of pure dynamics to deal with reality. While staying within
the confines of micro physics, Kampis stresses that qualitatively new behavior results
if the components of a system have cognitive ability. Here, we phrase this as
determining what will happen from what could happen, and we seek a prescription for
writing the dynamics of such a system that displays the observed behavior.

Shoham (1993) implements a calculus for agent-oriented programming (AOP)
that tracks the activities of agents capable of cognitive social functions such as
beliefs, decisions, capabilities and obligations. While this work succeeds in reducing
very complex social networks and chains to their irreducible effects, our purpose here
is different: to simulate populations of minimally cognitive objects in real time.

Genesereth (1989) has studied collections of agents that can obtain knowledge
and take actions based on partial knowledge, systems similar to the present work.




In knowledge representation theory (Harmon and King, 1985), a piece of
knowledge is accompanied by a confidence factor that is the probability that the
knowledge is correct. The matrix element Kij can be identified as essentially this
confidence factor; the KtA provides a particular dynamics for the matrix.

Many workers are producing surprisingly realistic simulations of collective
behavior of real animals. Typical is the work of Huth and Wissel (1992) on fish
schools, in which individual fish know only about their nearest neighbors. We believe
that phrasing such simulations in terms of mutual knowledge would be useful.

In contrast, models of emergent behavior based on simple local dynamics are
quite different from the dynamics discussed here. For instance, Millonas (1992) and
others have modeled ant swarms based on a small set of simple rules for each ant.
While this procedure does generate complex emergent behavior that often accurately
simulates real ant swarms, there is no provision for nonlocal interactions that are at
work in collections of individuals that know about each other.

Conclusions

In this work, I have proposed an algorithm that tracks the interactions between
individuals in a population based on a metaphor of mutual knowledge. The algorithm
has the effect of determining the actual motion from all possible motions. This is a
hybrid dynamics, specifically designed for minimally knowledgeable individuals. It is
linked through probability to mechanics, dynamics, information theory, and statistical
mechanics. We find that a spectacularly small amount of knowledge is necessary for
even very complex collective behavior, and that even an infinitesimal amount of
knowledge is capable of producing major qualitative alterations in the evolution of
the population, due to the long-term accumulation of small changes.
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