A Primordial Soup Environment

Jeffrey Putnam
New Mexico Institute of Mining and Technology
jefulnmt .edu

December 28, 1992

Abstract
Stew is a system similar to Tierra, but using a rather different
machine model. The intent of Stew is to enable exploration of evolution
in a spatially distributed machine model.

1 Introduction

Tierra [1] has been a very successful project involving genetic evolution of
individuals. Each individual is essentially a “virtual computer” that runs a
basic instruction set in a large shared memory (“the soup”). Instructions
can execute with errors and this leads to evolution over time. The individual
“virtual computers” are considered to be surrounded by a “semi-permeable”
membrane which allows other individuals to read and execute the instruc-
tions, but not to write to them.

Tierra has shown that a simple model can give rise to complex behaviors
with evolution giving “parasites”, individuals resistant to those “parasites”
and generally more efficient self copying individuals.

Stew was inspired largely by Tierra and also by several talks at the
ALIFE III workshop in Santa Fe. One of these talks (by Buss and Fontana)
presented something that looked rather like Tierra but with the lambda
calculus as its fundamental machine model. It prompted the question: “How
fragile are different machine models?” as well as “how adaptive”.

The original idea was to modify Tierra to work in a two and a half
dimensional space. Individuals would occupy linearly adjacent locations
as in Tierra. Each set of these memory locations would reside in a two
dimensional grid and additional instructions would be added to the system
to allow each individual to address memory in those adjacent locations.
Thus, the system could be seen as a two dimensional grid of columns. Each
column would then receive the same number of instructions on each pass
through the grid.

Another change to Tierra considered was to loosen the “semi-permeable”
membranes surrounding each individual and to allow another individual to
write through the membrane and into the individual under certain condi-
tions, such as when the individual wanting to write had more energy than
the recipient. This would enable true parasites to form.

Upon consideration of the Tierra code and the realization that the changes
needed would necessitate a very large amount of coding, it was determined
that a new system would be a worthwhile endeavor as it could provide for
more flexibility and make instruction set modification simpler.

auy |

The system has been constructed and has run several hundred million
instruction, however, interpretation of the data has not kept pace with the
results. Some preliminary results are discussed below.

2 Stew Design

The design of Stew had several goals. The general intention was to build a
system that would model (at least a computer scientist’s view of) a molecular
soup. Specific goals included:

1. The ability to spatially distribute individuals and move them around
2. A separate address space for each individual
3. The ability to manipulate address spaces without using addresses

4, Granting individuals the capability to write to the “memory” of other
individuals.

5. Enough flexibility to make further changes easy.
6. As in Tierra the basic building blocks are both instructions and data.

7. Rather than making instructions execute with errors, every instruction
in the system is potentially mutated on a regular basis.

Two model interactions between individuals were also considered impor-
tant in the design. Making a first implementation capable of these interac-
tions was a prime goal as well as the general ideas above.

The first of these was to make the individual elements of the soup ca-
pable of doing essentially a genetic crossover. Thus, a suitably programmed
individual should be able to attach itself to two other individuals and to
intermix them to produce an individual that consists of some of the first
and some of the second. Then with (eventual) read and write errors, this
individual essentially builds a mutated and crossed version of other indi-
viduals. It should be possible for the individual to use itself as one of the
contributing individuals, thus reproducing sexually.

The second interaction was to allow an individual to write into another
individual when certain constraints were satisfied. This would enable the
process of killing off weaker individuals to be not a matter for the pro-
grammed system, but a natural part of the system’s workings.

A4<

As in Tierra, there is a way for an individual to create a “child”.

The system thus conceived eventually evolved to consist of the following
basic elements (the terminology is borrowed from chemistry without apology
for any misconceptions) :

Atoms An atom is a single instruction or component. Currently atoms
take values from 0 to 255 (thus could be represented in a single byte).
Atoms are always non-negative. Atoms are organized as sequential lists
or streams. Currently less than 256 instructions are used so remaining
atoms are used to represent instructions more than once. Thus the
add instruction might be instructions number 1, 51, 101, 151, 201,
251. This allows for flexibility in adding to the instruction set. Labels
may be set in atom streams by using the instruction label followed
by the atom that represents the label.

Contexts A context is an array of atoms along with a position. Contexts
. are used to represent instruction execution as well as the state of any
reading and writing. The position thus represents the PC of the ab-
stract machine, as well as a read /write pointer, depending on context.
There are four context “registers” in each abstract machine. One
of these is the execution context, one is a read context, one a write
context, and the fourth may be used for a scratch “register”. Each
molecule also has a context stack. Jumps to atom streams of any type
are possible and are accomplished by setting the execution context to

be another context.

Molecules A molecule is the fundamental virtual machine in Stew . It
consists of an array of atoms, some execution state and some informa-
tion that allows for interaction with other molecules. The molecule is
the central element in this system and will be described in more detail
below.

Cells A cell is a location that holds molecules. Molecules can move from
cell to adjacent cell randomly as long as all cells attached together
move in the same way. All molecules in a cell can interact, thus a cell
is considered to be a small area in space.

3 Molecules

The molecule is the fundamental virtual machine in the system. The com-
putational aspects of the molecule were borrowed from Forth or Forth like
languages. All computation is performed on an operand stack where the
operands are atoms. Thus, to add two atoms, the atoms are pushed on the
stack, then the add instruction is executed which pops them both, adds
them and pushes the result back on the stack. Operations that perform
computation or stack manipulation include basic arithmetic, logical com-
binations and some operations that rearrange elements on the stack. The
instruction set is given in Appendix A.

Computation may involve errors. Each error (for example, pop from
an empty stack or divide by zero) increments the damage counter in the
molecule by 1. Each instruction executed (successfully or not) decrements
the damage counter by some (configurable) amount. When the damage
counter reaches some upper limit (which can be configured at execution
start up), the molecule dies and is removed from the population. There is
also a die instruction which immediately kills the molecule.

The state of the molecule also depends on several contexts. These in-
cludes four context in an array - the current execution context, a read con-
text, a write context, and an unnamed context (for scratch use) and a stack
of contexts which can be used as a subroutine stack or as a convenient place
to hold contexts until needed. Several instructions are included to ma-
nipulate contexts and the context stack, including basic stack operations.
Instructions are also provided that create contexts in different ways. For
example, one way to implement a jump is to create a new context that
copies the execution context, then to search it for a label. The result is that
the (copied) context now has its pointer set to the label (if any is found).
To finish the jump the new context is then set to be the execution context.

Molecules exist in a world (consisting of a set of cells) with a certain
geometry. Currently this world is one dimensional world and the ends wrap.
The size of this world may be set at run time. Molecules move randomly
from one cell to adjacent cells where the probability of movement from one
cell to another depends on their relative number of cells. Thus cells with
many occupants tend to lose their population to adjacent cells.

In order to interact with other molecules each molecule has four “arms”.
The first arm is always attached to (the molecule) itself. The other three
can be used to grab other molecules so that the molecule can read or write
them. This works as follows: Each molecule contains a “species 1. D.” (a

AU

sequence of four bytes) which may be used to identify it. This is inherited
from the molecule’s parent (perhaps with mutations). A molecule can load a
“pattern” from its operand stack and wait for a molecule whose id matches
the pattern. A molecule matching the pattern is attached to one of the arms
and a context for that molecule is created and put on the top of the context
stack. Zeros in the pattern are wild cards and will match anything,.

Other important instructions are detach which frees a molecule from
the arms and probe . In order to write to a molecule, an attaching molecule
must perform the probe instruction. probe compares the damage of the
probing molecule and the probed molecule and randomly determines if the
prober can write. This is done by picking a random number r; in the
interval [0, demage] for molecule 1 and one ry in the interval [0, damage] for
molecule 2. If r; < r; the probing molecule gains write permission. Once
write permission is granted it will not be lost until the probed molecule is
released by the probing molecule. probe also increments the damage in
both molecules by some random amount. This was intended to discourage
molecules from simply sitting in a tight loop and probing others.

4 How the World Works

When started the system usually reads a parameter description file. This
may set such system level parameters as the number of molecules to begin
the system, the number of “generations”, the mutation level and so on. It
is also possible to set the first generation to s specific mixture of molecules,
so lines may be entered that describe the number of molecules to make of a
specific type, their “species” and the file that contains the code.

The world is created and seeded with these first molecules. Then the
specified number of generations is executed. At each generation, the set of
molecules is examined and any molecule not waiting is given the chance to
execute some number of instructions (currently 10). The execution context
of that molecule is used to find the sequence of atoms (instructions) to
execute. Instructions are then executed until either the total number of
instructions in the generation is reached, until the molecule executes a wait
instruction or until the molecule damage reaches the death threshold.

When a molecule dies it releases any molecules it may have attached as
well as any children it may be in the process of constructing. The children
may be incomplete, but they are marked as alive and set loose just as if they
had been born normally.

All molecules still alive and not waiting are thus given a chance to
run. This happens in the order in which they are found in a global set of
molecules. Since this set is a hash table, this order is more or less random.

All molecules in this global set are then mutated. Each atom in all
molecules has a chance of a bit changing (the probability of this may be set
in the configuration file).

All the new molecules (those born during the course of the generation)
are then added to the global set and to the same cell as their parent. All
molecules that died during the generation are now scavenged. A message is
printed for each molecule (either newborn or dead) giving their makeup and
status. We must print out the entire makeup of the newly dead molecules
as the mutations applied over their lifetime may change their structure.

The molecules are moved from cell to cell randomly with “population
pressure” the primary determination for the way the molecules move.

Finally, each cell is checked with each waiting molecule to find matches.
If 2 match is found for a waiting molecule, the matching molecule is placed
on an empty “arm” and the waiting molecule is awakened so that it may
run in the next cycle.

The number of live molecules is compared with the “goal” population
and a new death threshold is computed. This threshold is used to determine
if molecules are dead on the next generation. The threshold can never be
reduced below one half the starting threshold.

On each generation the number of molecules still alive is printed to give
a way to follow the growth of the population.

5 First Molecules

It was initially intended that the system would have no external method
to kill off molecules (except by the natural death mechanism above), so an
early molecule constructed was the Reaper. This molecule sets up a wild
card pattern so that it will match any molecule in the same cell as itself and
waits for the system to find a match (the exact instructions in this function
are presented in Appendix B). When a match is found, the molecule is
attached and the die instruction is inserted at the head of the instruction
stream. In this way, when the molecule comes to the end of its instruction
stream and returns to the beginning the die instruction will kill it off.
Since molecules with more damage are more prone to give write permission
(as above) this tends to kill off the weaker (more damaged) molecules and

A

leave the live ones.

In order to generate new molecules a “Cloner” was also written. The
cloner waits for any molecule (with the same wild card pattern as the reaper)
and then copies the molecule into a new molecule and detaches both the new
and old molecules. Cloning takes rather more time than reaping (reaping
needs only insert one instruction into the target molecule which takes on the
order of 5 instructions, cloning takes about 10 instructions for each atom in
the target).

The first experiment with the system consisted of running it with some
number of clone molecules and some number of reapers initially. It proved
difficult to adjust these numbers to produce a stable population, either the
population grew exponentially or decreased to zero. It also developed that
with anything but a zero mutation rate the reaper eventually mutated suffi-
ciently that it could not maintain the population at anything near stability.
Thus the program was modified so that the threshold for death would be
reduced as the total population increased. This threshold (by default 100)
would decrease asymptotically to zero as the population increased to infin-
ity. However in even the most populous experiments, the death threshold
never went below about 80. Thereafter, populations were controlled by this
mechanism rather than by the use of the reaper molecule.

Generally, populations showed an initial very slow growth, usually with
new molecules produced by molecules executing instructions that had mu-
tated - either resulting in their death or in releasing any partially formed
child molecules. After 32 generations (enough to reproduce a cloner), a
sharp jump is observed when all the children produced by the cloner are
released from the parent molecules. Because of mutations, the growth after
that point is more even but with another large jump at about 64 generations
where the third generation of molecules is born.

As the molecules accumulate mutations the less successful ones die and
if the mutation rate is high enough the death rate soon overtakes the birth
rate and the population begins to shrink. After a while the population most
often reaches a stable point. However, this stability is not caused by the
death and birth rates reaching the same point, but usually because the final
molecules have all executed the wait instruction and are waiting for patterns
that no longer exist in the population. Since molecules do not change their
damage status during waits, a waiting molecule that never finds its pattern
may sit in a wait essentially forever. It is not clear how to resolve this
problem and keep molecules alive and active.

Another experiment involved building two species of molecules. The

9Se

35

00 b Y e and

o p
oo p
W00 p

100 §

] L L L i 4 L i L 1 i L i A 1 L L

i
100 00 300 100

Figure 1: Population VS Time

first cloned members of the second and vice versa. Until the cutoff for small
molecules (see below) was implemented, the population grew rapidly (over
the course of several doublings which occurred every 32 generations) and
rapidiy slowed the simulation down unacceptably. With the cutoff for small
molecules. a run of almost 500 generations was made and some interesting
properties emerged.

Tte graph in 5 shows population versus time for this problem. Note the
discortinuities at 32 generation intervals between generations 0 and about
160. These discontinuities blur then essentially disappear for about 200
generations then reappear about generation 280. It is not clear from the
output of the program just why this is occurring. In large part this is due
to the difficulty of understanding the programs produced by mutation over
time.

5 and 5 show size distribution for individual molecules. In 5 the sizes
are shown for the entire run. 5 shows the sizes for only those molecules of
size less than 50 atoms. The large molecules in 5 seem to have been born
from more or less normally small molecules. One, with a size of 455 seems

200 =

100

[!
) [0 4.

cafies oo e ©® ® :u .] Qe &
i 1

L L L " i i L L i L 1

100 200 300

Figure 2: Individual sizes

500

250

200

150}

100 ¢

50F

1 i 2 i i | A A A i i : i i i 1

10 20 30 40

Figure 3: Individual sizes (up to size 50)

to be mostly made up of copies of mutated versions of the original copier.
Its parent is a molecule of size 34 which when born builds a pattern and
waits for it, then executes what seems to be a nonsense pattern. Since it
had not died when the output was examined it was impossible to tell what
it had mutated into. Another long molecule consisted mostly of repeated
copies of the 1iteral instruction which just copies the next atom onto the
operand stack.

5 shows the distribution for molecules less than 50 atoms long. The
higher peak (between 36 and 38 atoms) consists of copies of the original
copier molecules and slight mutations from those. The 36 atom peak comes
from a number of very slight mutations of the original 38 atom cloners, but
for the most part, these molecules seem to attach molecules then just read
from them, no writes are performed. For these to have reached such a peak
in the population they must be created from simple mutations of cloners
and be relatively stable.

Another peak at 11 atoms consists of a large number of atoms that
first appears near generation 100. This simply seems to be a remarkably
successful (there are many variants with only trivial mutations) simple loop
that does nothing. Several very similar variants come from molecules that
seem to be copying part of their own atom stream into a child molecule.

9S3

Thus, it seems that from a kind of sexual reproduction where molecules of
different “species” interact to copy each other a set of molecules (which seem
to be more or less generated independently) develops that copy themselves,
albeit to sterile children.

6 Problems

At this point there are several problems that must be addressed.

The first is the deadlock problem where all the molecules currently alive
are waiting for molecules to match their patterns, but no molecule existing
can match that pattern. Certainly, one way to address this is to determine
that this is not a problem, that in fact this is a successful experiment that
has merely produced an unfruitful result. There may be other ways to
resolve this as well. One that will be implemented shortly is to allow pattern
matching to be more fuzzy and to increase the level of fuzz allowed as the
molecule waits longer. That is, instead of a pattern match returning either
true or false, let it return a number between 0 (strictly false) and 1 (strictly
true). When the molecule first waits, it will only find matches where the
pattern matcher returns 1. Over time the level at which the pattern matches
will be reduced until it eventually reaches 0 at which time any pattern will
match. This might also eventually allow the molecule to specify a pattern
match level.

Another way to attack the deadlock problem is to allow pattern matching
to be subject to errors.

Another serious problem at this time is the run time required by these
experiments. [t is not atypical to have run times upward of several days for
large problems (say over 300 molecules) and the program renders the ma-
chine it is running on almost unusable by anyone else. In our local computer
environment. this is unacceptable since our resources are quite limited. An-
other change contemplated will run a simulation over a number of machines,
with each machine running a single cell. With pauses for end of generation
synchronization and communication, this should make the perceived impact
on machines much less.

Molecules may also be trivial. Thus a molecule that consists only of a
nop can do nothing and takes up time and space without accumulating
damage. Such a molecule will run forever, or until mutation changes the in-
struction. This raises the population and the run time without adding any
significantly interesting behavior to the population. One solution (currently

§

implemented) does not add any sufficiently small molecules to the popula-
tion. The cutoff size is 5 by default, but may be configured at start up time.
This leads to much smaller populations and therefore to faster runs. The
ability to configure this to change over simulation time might allow even
faster runs and more selective culling of unfertile children (such as the 11
atom child discussed above).

There remain several coding errors in the instruction set. This does
not seem to be a major problem in the simulations as the instruction set is
more or less arbitrary and thus the molecules develop according to what the
instruction set actually means, but it does complicate interpretation.

7 Conclusions and Further Work

Stew, an intellectual descendant of Tierra, modifies and extends the Tierra
model of computation by introducing a means for one individual to write into
another, a topology for the interactions of individuals and for their motion,
and a simpler model for mutations and errors in instruction execution.

While millions of instructions have been executed, few of the experiments
have resulted in more than fruitless stasis as yet. There are several problems
that require solution before more extensive experiments can be run.

There are a number of further extensions to this system that will be
implemented to enable better control of the system and to perform different
types of experiments.

For example, it might be interesting to set up the underlying array of
cells in such a way as to have higher mutation rates in one cell than in the
rest. This would mean that more of the molecules would remain stable while
the population would have a continuing source of mutated individuals.

Since the instruction set is rather sparsely occupied at the moment, it is
relatively easy to add instructions. One that might be of interest would be
to add movement to the molecules (perhaps undirectional). Molecules with
high movement factors would change locations relatively quickly and would
thus be more likely to be grabbed by other molecules and copied.

The system currently does not implement dumping of the configurations
of molecules which means that it is not possible at this point to look and
see if clusters of molecules might form in a kind of symbiotic relationship.
This might, given the way the simulation works, actually appear relatively
early as grabbing molecules is easy.

Another very interesting potential change (in fact, the change I initially

NS

wanted to make to Tierra) would be to distribute instructions in each gen-
eration uniformly to cells, rather than to individual molecules. This might
produce true symbiosis and parasitism.

3g

A Instruction

Instruction
literal

label
ouch
pop
timas

minus
add

divide

andop

or

not

dup

exch

nth

gt

1t

eq

damage

if

die

wait

getid

probe

read

write

reset
push-context
detach
push-label-forward

Set

comment

the next atom in the instruction stream is pushed on the
operand stack

this and the following atom are ignored during instruction
causes small damage to a molecule

pop the top of the operand stack and discard

multiply the two numbers on the operand stack and push
the result

subtract (as in times)

addition

division - pushes quotient and remainder

logical and, zero is false, anything else is true

logical or

logical not

copy the number on the top of the operand stack
exchange the top two numbers on the operand stack
copy the nth number down on the operand stack
compare the top two numbers on the operand stack
compare again (reverse sense to gt)

compare for equality

get the current damage in the molecule and push

on operand stack

if the top number on the operand stack is true, skip

the next five instructions

commit suicide

wait for a molecule matching a given pattern

push my species id (four atoms) on the operand stack
test to see if the context specified is writeable

read one atom from the read context

write one atom to the write context

reset the context to the beginning

make a copy of the designated context on the context stack
let a child (or attached) molecule free

search forward in the designated context

for a label matching the given label atom

5%

push-label-backward

pop-context

drop-context
dup-context
copy-context
exch-context
arm-context
endp

begin

start-molecule
set-pattern
other-context

write-context
read-context
exec—contaxt
skip-forward
skip-backward
clear

nop

search backward

given a context number, put the context on the

top of the context stack in that context slop

pop the top of the context stack and discard

copy the context on the top of the context stack
deep copy the context on the top of the context stack
exchange the top two contexts on the top of the context stack
create a context for the designated molecule arm

test to see if the context points to the end of an atom stream
test to see if the context points to the beginning of
an atom stream

start a new molecule

set the pattern the molecule will wait for

push the context number of the “other context” slot
on the operand stack

similarly for the “write context”

similarly for the “read context”

similarly for the “execution context”

skip forward in a context by a given number of bytes
skip backward

reset and clear out all the contexts

no-op

3

%9

B The Cloner

literal ; set pattern to all zeros
0
dup
dup
dup ; now we have 4 zeros on the stack
set-pattern ;stash it
wait ; and wait for a match
dup ; got a result, but it might be an error
literal ;so check, 4 or greater is error
4
gt ;is the answer bigger than the arm number? - top of stack

if ; test

pop ; greater than three, so an error, pop the error (skip if tos is true)
clear ; go directly to GO

nop ; third instruction jumped over

nop ; fourth instruction jumped over

nop ; fifth instruction jumped over

arm-context
read-context :
pop-context
write-context :
gtart-moleculs
exec-context
push-context

get the context associated with it

and make it the read context

start a new molecule context to context number on top of stack.
where to jump to do the loop
save it on the context stack

- e

read ; read next atom from read context, put on top of stack
write ; write next atom to write context
read-context ; at the end of the read context?
endp :
if

test to see if done
copy-context ; dup the context on the top of stack
exec-context ; copy that context to the execution context
pop-context
nop
nop ;
write-context

end of skip for if.

detach

read-context
detach
raset

3

3

; set newly built context free
; and back to the beginning

C The Reaper

The code that follows is the assembler for the reaper. It is almost identical
at the start to the cloner. It pushes four zeros for the wait pattern, then
waits. When it attaches to a molecule it inserts a “die” instruction at the
front of the molecule so that when that molecule executes a reset the “die”
instruction will be the next to be executed. One question that remains to
be investigated is whether other molecules will learn to avoid “reset” in a
simulation with reapers.

In this listing the first 17 instructions are skipped as they are exactly
the same as the first 17 instructions of the cloner (above).

arm-context
write-context
pop-context
exec—-context
push-context
write-context
probe

if
copy-context
exec-context
pop-context
nop

nop

literal

die

write
write-context
detach

reget

; first 17 instructions skipped

6o

References

[l] Thomas S. Ray. An approach to the synthesis of life. 1992.

N

