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Abstract

The regulation of the mitotic clock was examined using a theoretical
model for the embryonic cell-cycle (Norel & Agur, 1991). Now the model
is extended to account for the temporal regulation of early embryonic
events. We show that a slow increase in the transcription ratio of cdc25
and weel suffices for explaining the observed synchrony and constant
duration of divisions in the first 11 cleavage cycles in Xenopus, followed
by a progressive increase in cell-cycle length and break of synchrony in
further divisions. A new additional feedback for the autocatalysis gen-
erates stable chaotic oscillations in the system. This stabilizing feedback
involves a change in the sign of the autocatalysis. It may be interpreted
as a periodic change a ratio of c¢dec25/weel activity.
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1 Introduction

The cell cycle can be viewed as the overt expression of a cellular oscillator. Equally it

can be thought of as a complex developmental process that takes place within a single
cell (Kirschner, 1992)

Evidence that, at least in certain kinds of eggs, the cell cycle is regulated by au-
tonomous oscillator can be provided by a series of self-perpetuating chemical reactions in
the cytoplasm. The system for the initiation and completion of mitosis in cells involves
several genes. The key element is a protein kinase p34°%? encoded by the gene cdc2. The
amount of the cdc2 gene product does not vary during cell division but its kinase activity
is positively regulated by other gene products that appear and disappear during specific
stages of the cell cycle.

Recently, it has been shown that p34°9? and cyclin combine to form a heterodimer,
MPF, which when activated, triggers all the major events of mitosis and cell division.
A striking feature of MPF is its ability to auto-activate, so that injection of a small
portion of an egg with high MPF activity into a second egg with low activity stimulates
an increase in MPF activity in the second.

In a previous work (Norel & Agur, 1991) a mathematical model of cell cycle pro-
gression is presented, integrating recent biochemical information about the interaction
of p34°%? kinase and cyclin. Underlying this model is the principle of parsimony: by
elucidating the minimal assumptions needed to retrieve the observed dynamics, it is
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2 TEMPORAL REGULATION IN EARLY EMBRYO

determined whether putative thresholds and time-delays, thought to be missing in the
biochemical model (Murray & Kirschner, 1989a) are indeed essential.

It is shown that the interplay of two biochemicals — cyclin and maturation promotion
factor (MPF) — is sufficient to explain the embryonic cell’s oscillatory behavior. The
model can also account for a progressive increase in cell cycle length and for a finite,
roughly constant, number of cell-divisions, characterizing senescent cell lineages. To show
this it is noticed that the changes in active MPF and cyclin concentrations are accelerated
by the activity of the gene cdc25 (positive regulation - activation) and retarded by that of
the gene wee! (negative regulation - inhibition). In fission yeast, these genes control the
entry into mitosis, and it seems likely that the ratio of cdc25/weel activity is altered by
signals that influence the entry into mitosis (Murray & Kirschner, 1989a). This control is
described by a function £ for the activity ratio cdc25/weel, which changes once per cycle,
and the sensitivity of the period and amplitude of the oscillations to the modulation by
F is studied (Norel & Agur, 1991).

Numerical computations of the model show a gradual increase in phase, or cell cycle
length. However, the pattern of change in MPF and cyclin phases and amplitude de-
pend on the modulated reaction. When only the rate of change in MPF concentration
is modulated through the function F, the amplitude of MPF oscillations progressively
decreases and the amplitudes of cyclin oscillations increases, and the'minimum rapidly
reached a value close to zero. The latter effect may be interpreted as a cell cycle arrest.

When both processes are modulated, the amplitude does not change but the phase
increases and tends to infinity, when the function F' tends to zero. In both cases the
number of cell divisions until a cell cycle arrest is reached depends on the step size of the
function F.

Based on these results it is suggested that the modulation of the MPF and cyclin
reaction rates by cdc25/weel activity ratio may be responsible for the roughly constant
number of cell divisions observed in some cell lineages (Norel & Agur, 1991).

2 Temporal regulation in early embryo

What coordinates the temporal sequence of events in the embryo? Although the exact
timing of specific events differs dramatically between species, the reproducibility within
a species argues strongly for the existence of specific regulators of the temporal program
(Kirschner, 1992). Based on these observationgwe now use the Norel & Agur model
to account for the temporal regulation of early development. In particular, we wish
to explain the seemingly constant length of cell cycles and their synchrony in the first
11 cleavage cycles in Xenopus and the increase in average cycle length and break of
synchrony between the 12th and 16th cycles (Newport & Kirschner, 1982).

In Norel & Agur (1991) C and M denote the cyclin and the active MPF concentrations
at any given moment, and C and M the rate of change in these concentralions. For
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2 TEMPORAL REGULATION IN EARLY EMBRYO 2.1 Limit cycles

formally describing the MPF activation, they use the assumptions that (i) in the early
embryos, cyclin synthesis suffices for the activation of MPF and for the induction of
mitosis (Murray & Kirschner, 1989a), and that (ii) MPF activity is autocatalytic (Nurse,
1990; Murray & Kirschner, 1989b). These assumptions are taken account of in the first
two terms in equation (la). The third term in this equation describes the inactivation
of MPF by a putative inactivase (which may be, for example, a phosphatase, Murray &
Kirschner, 1989b), whose activity remains constant throughout the cell cycle (Murray &
Kirschner, 1989a). In (1b) the rate of change in cyclin concentration, C, is given by the
difference between its constant rate of accumulation (O’Farrell et al.,1989), and its rate
of degradation. Because cyclin is known to be an essential component of active MPF
(North,1989), and its rapid degradation occurs immediately after the maximum in MPF
activity, it is assumed that its degradation rate depends on the cellular concentration of
active MPF. For simplicity, it is also assumed that no constraints exist with respect to
space and nutrients. Using the above assumptions, the following dimensionless equations

are obtained (Norel, 1990):

M =eC + fCM? — g3, (1a) W
C=i-CM. (1b)

To simplify the analysis, let us introduce a new scale for the variables M and C, so
that the system of differential equations (1) is replaced by the following system:

{:'c:ay-l—bz?y—dﬁ-f, (2)
g =1- Ty,

wherez = M, y = C/i, a = ei, b = fi, d = g. The system (2) is similar to (1) in yielding
a limit cycle behavior, i.e. an oscillatory change in MPF and cyclin concentrations.

2.1 Limit cycles

A local bifurcation theory allows us to investigate the existence of limit-cycles and
their stability for small perturbation of the Hamiltonian systems (see Arnold, 1983).

We consider a nondegenerate singular point (a stationary solution) of the system
(2). Without loss of generality we may assume that this singular point is at the point
51 = (1,1) that is £ = f(51) =0 and g = g(S1) = 0 (Figure 1). Therefore we have the
condition d = 2a + 2b. The operator of the linear part of the field (2) at the point 51 is

1
[ ( Zb_—l4d a_—{-lb ) (3)

The conditions of bifurcation of the center at singularity S is expressed by the following
relations for the operator L at the point Sl:
{ trace = 0,

diseriminant < 0.

(4)
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2 TEMPORAL REGULATION IN EARLY EMBRYO 2.1 Limit cycles
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Figure 1: The autonomous system (2).
Left: Null clines (£ = 0 and y = 0) and the singular points (crosses these isoclines: S1 = (1,1) and
52 = (k+ Vk? + k;~1 + /1 +1), where k = 1/l = afb; see (7). Right: Projection (sharp corner)
of generic cases domain (7) into the plane (b,a) is bounded by the lines of the singular cases Ll:
trace = —a+3b— 2 = 0 and L2: determinant = 3a — b = 0. From the left side of line L1 the singular
point Sl is stable, the singular point 52 is not stable. From the right of line L1 singularity S1 is unstable.

(It is clear that if discriminant < 0, then determinant > 0; see also conditions (7).
Conditions (4) means that a pair of conjugate eigenvalues of the operator L at singular
point 51 must be pure imaginary. As a consequence we have the following conditions
for parameters: d = 2a + 2b;a = 3b— 2;b > 0.75 and d > 0 thereafter. We choose the
translation and the multipliers normalizing the expansion of coordinates and time for this
significance of parameters so that it transforms the original system (2) into the system

u =wv + P(u,v),
{1} = —wu + Q(u,v) )

with a singular point S1 = (0,0) in new coordinates (u,v). P and @ contain terms
of degree 2 and greater. The linear part of the system (5).is a harmonic oscillator
(Hamiltonian system) with the first integral H = 1(u? + v?). The phase trajectories of
the harmonic oscillator are concentric cycles around point S1.

Let us consider a perturbation system

= wv+ eP(u,v),
{13 = —wu + eQ(u,v), (6)

where € < 1 is a small parameter. In other words, we have a one-parameter family of
the system (6). Obviously the singularity Sl is a fixed, simple (nondegenerate) singular
point of a perturbation equations too. We are interested in the metamorphosis of the
configuration of phase curves in the neighborhood of the point $1 under a small change
in these equations.




43%

9 TEMPORAL REGULATION IN EARLY EMBRYO 2.2 Hopf bifurcation

Perlod

Figure 2: The autonomous system (2).

Left: Birth of a limit cycle as b passes through 1. Right: The increase of regular oscillations period for
b e (1,1.08).

Let §H be the increment of the Hamiltonian H under one revolution along the closed
phase curve H = h. Then

§H =~ f Hdt = jgu(wu + €P) 4+ v(—wu + Q) dt = eG(r).

Consequently, in the first approximation, the condition for the birth of a cycle of radius
7o is G(ro) = 0. After the detailed considerations we have
b 2b —
G(r) = ——=nr' +

Qw3

and rp = 2w = 2v/4b — 3. The condition of the stability of the limit cycle rq is: eG'(10) <
0 and in our case it is true if e > 0.

ar? + drw.

2.2 Hopf bifurcation

There are no analytic methods that permit us to investigate an integral behavior of non-
linear differential equations. Therefore we need heuristic arguments in order to choose the
parameter values for which periodical solutions of these equations exist. The parameter
values from conditions (4) allow us to locate the limit cycle of the system (2).

Without loss of generality let the point S1 = (1,1) be again a simple singular point
of the system (2). There is a plane 2a 4 2b — d = 0 in the parameter space Z = {a,b,d),
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which corresponds to the systems with a singularity at the point S1. This plane is not a
hypersurface of singular cases in the function space Z. However, this plane in our function
space may intersect some of these hypersurfaces, and therefore we must consider on this
plane a domain of generic cases (Figure 1):
irace > 0, ¥
> Q
determinant > 0.

We note here that recently C.D.Thron (1991, unpublished) has investigated similar
equations. He considers a system, whose defined simple singular point, of unstable focal or
unstable nodal type, satisfies conditions (7). In this way Thron was successful in finding
limit cycle behavior. It should be noted, however, that (7) is a necessary condition for
the existence of a closed trajectory with a single simple singular point inside only, but
this condition is not sufficient.

For a closer investigation of the behavior of the system (2) let us consider a one-
parameter family of the system, for example, a = b. In this case the second singular
point 52 is fixed too. Let us investigate a neighborhood of the bifurcation value of
parameters b = 1, that is a case where a pair of conjugate eigenvalues of the operator (3)
at the equilibrium S1 crosses the imaginary axis from left to right. As b passes through 1
the focus at the point S1 loses stability. In this case the corresponding pair of conjugate
eigenvalues of operator (3) is equal to 4i. For b = 1, at the point S1 the focus is also
stable, but not robust: the phase curves approach S1 nonexponentially. For b =1 + ¢
where € > 0, moving from the focus to a distance proportional to /€, the phase curves
wind onto a stable limit cycle. Consequently the loss of stability in the passage of b

through 1 takes place with the birth of a stable cycle whose radius increases with /e
(Figure 2).

In other words, the stationary state S1 loses stability and a stable periodic regime
arises, whose amplitude is proportional to the square root of the deviation of the param-
eter from the critical value. This form of loss of stability is called a mild loss of stability,
since the oscillating behavior for small criticality differs little from the equilibrium state.
It is a Hopf bifurcation or a soft generation of self-sustained oscillations.

2.3 Scenario of development 1

Based on our results we suggest that a progressive increase in zygotic transcription of
cdc25 is responsible for the increase in cell cycle in early development. As long as the
contribution of zygotic transcription to the overall concentration of cde25 is very small
and activation of MPF is dominated by the maternal cdc25 product, the cycles are similar
in all cells and hence, divisions are synchronized. When the shift occurs and the control
becomes dominated by the zygote, cell cycle duration is locally controlled by the nuclear
product of each cell. Now the concentration of c¢dc25 is more likely to vary between
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Figure 3: The relaxation oscillations.
The behavior of the fast-slow system (8) for zo = 1.2, yo=1l,e=1,b=3,d =8, ¢ = 0.1. Left: Phase
trajectory in the space (z,y,b): limit cycle. Right: Time plot for the z, y, b: bursting. The variable b
can be negative.

cells and we observe a transition from a single limit cycle to a family of limit cycles.
It is plausible that differences in nucleocytoplasmic ratio, due to asymmetric divisions,
are responsible for the small changes in b as it presumably affects the concentration of
chemicals in cytoplasm and, hence, the reaction rates; lower ratio will mean less ede25
and hence shorter cycles. Synchrony may be broken down due to the small differences in
cycle duration between the different cell lineages.

3 Feedbacks

Modeling the dynamics (which is relatively simple) rather than the biochemistry (which
is relatively complicated) might be a useful approach for biological phenomena

involving a trigger mechanism (checkpoints in the cell-cycle) which leads to some specific
action (Zeeman, 1977). In our case, to a first approximation the dynamics are given
by the system (2). However, this approximation does not allow for variation of a, b, d
with time. If a, b, d represent some biochemical controls their values may vary by many
orders of magnitude, i.e., the system may possess a time hierarchy. This time hierarchy
may be included in the system (2) in an implicit form and to make it explicit we have
to transform the coordinate system (z,y). To keep matters as simple as possible we will
suppose that we the system has only one level of time hierarchy.
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Figure 4: A strange attractor.
The behavior of the autonomous system (8) forzog=15,y0=15,a=1,6=24,d=8, ¢=1in the
space (z,y,b). This strange attractor has on the face of it the shape of Mbius band. But a more detailed
examination shows us that this "band” is not a manifold and that it is folded like a baker transformation
(see, for example, Bergé et al., 1988). This transformation allows the mixing up of trajectories. Only
one trajectory is shown. Perspective changed by " XPRISM3”.

3.1 Relaxation oscillations and strange attractor

Let us consider first the following system, where a, d are constant and b is the biochemical

control variable. . 2
:c:ay-l—b:z;?y_dz—f_-f, \Mvg-&
ok | (8)

y=1-—uy,

b=¢(1 —z?%y).
The system (8) contains the fast subsystem (2) and if € < 1 it is a fast-slow system. Let
one of eigenvalues for the operator (3) of this fast subsystem at the singular point S1 be
equal to zero, i.e determinant = 0. In this case the fast-slow system (8) can have regular
relaxation oscillations, that is the trajectories form an attracting cycle (see Figure 3).

If we assume now that in (8), € = 1, so that (8) is no longer a fast-slow system, we
obtain a chaotic behavior. At first a doubling of the limit cycle period takes place, during
the variation of the coefficient b, with an appearance of double cycle. After the loss of
stability of this double cycle a new attractor in the system (8), e = 1, is born. This
attractor has a chaotic behavior and is denoted a strange attractor (Figures 4 - 6).

ORemark. An attractor is a set in a phase space, which attracts neighboring con-
ditions (transients). Attractors that are not equilibriumn states or strictly periodic os-
cillations have been given the name strange attractors. The transition of a system to
such a behavior means that in it, complicated non-periodic oscillations are observed, the
details of which are very sensitive to small changes in initial conditions. At the same
time, the average characteristics of the behavior are stable and do not depend on the
initial conditions (when they vary within some domain) (see Hess & Markus, 1987).
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Figure 5: Breakdown of symmetry of double cycle.
Breakdown of symmetry of double cycle for (8), ¢ = I. Time plots of the strange attractor for the
autonomous system (8) for zo = 1.5, 30 = 1.5,a = 1, b = 2.4, d =8, ¢ = 1. The amplitudes and
periods of oscillations for z and y are disordered behaviors. Left: Variable x. Right: Variable y.
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Figure 6: Chaotic characteristics of the strange attractor.
MAP plots of each variable at the time ¢ as a function of the same variable at time ¢t — 1 for the
autonomous system (8) for zo = 1.5, yo = 1.5, 2 = 1, b = 2.4, d=28, ¢=1 Left: Variable x. Center:
Variable y. Right: Variable b.
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Figure 7: Bifurcation delay.
For the systems (9) with complex slow and fast dynamics. Left: The behavior of the one trajectory in
the space-time (z,y,t) for zg = 1.2, 90 = 1,a = 1, b = 1.006, d = 4, ¢ = 0.004. Right: Time plot of
cforzg=12,po=l,a=1,b=1,d=4,¢ = 0.001. Here, we can see the rapid onset of oscillatory
behavior, first decreasing in amplitude but then increasing. The oscillatory behavior dies away to almost
zero amplitude before increasing again (see also a similar result by Collier et. al., 1992 and a description
of general theory in the works Shishkova, 1973; Neishtadt, 1987, 1988; Benoit, 1991; Arnold, 1992).

A more complex model assumes that the biochemical control of the system includes
also the coefficients a and d. Now &, b, d are proportional to (in suitable units equal
to) the deviation the system (2) from its equilibrium state. (Any system t ends to come
back to an equilibrium state with a force which is proportional to its deviation from this
equilibrium state.) The equilibrium solution of the fast system (2) is (z(t) = 1, y(¢) = 1),
so that we obtain the following system with the time hierarchy:

T = ay + bzly — -2,

:9-'=1_'$y,

@ =¢€(l—y), (9)
b=e(l—a%y),

d= (0.5 —<2 )

Here z, y are the fast variables and a, b, d are the slow variables, if € is small (e < 1).
The slower response of the equations for &, b, d is said to give the feedbacks. The typical
behavior of the system (9) is shown in Flgures 7-9for e = 1075, ...,1. These results
show that stability of the oscillations is sensitive to the rate of reactions of the control
variables a, b, d. This sensitivity suggests that, in general, the system (9) is unstable.
For this reason the possibility that a and d vary during the cell cycle is not very likely.
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Figure 8: The behavior of trajectories of the fast-slow system (9).
Left: Limit cycle lnto the space (z,y,t) for o = 1.2, yp = 1, e = 1, b = 1.006, d = 4, ¢ = 0.00001.
Right: Delayed bifurcation. Into the space (z,y,t) forzp = 1.2, yp=1,2a=1,b=1.006,d =4, e = 0.L.
This structure 15 brought out even more spectacularly in Figure 7.
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Figure 9: Dynamics of the control variables.
Left: The variables e, b, d of the fast-slow system (9) forzg = 1.2, 5o =1,a=1,b=1.006,d=4,¢ =
0.004 (see Figure 7). Right: The variable b of the system (8), ¢ = 1 with the strange attractor for
zo= 15,y =15a=1,b=24,d=8 (see Figure 4). The amplitudes and periods of oscillations for b
are disordered behaviors.
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3.2 Scenario of development 2

In part 3 we replaced the assumption that the coefficient of the autocatalytic reaction
gradually increases by the assumption that this coefficient is a control variable that
depends on the displacement of the system from its equilibrium state. Now we can use
an increase in the rate of the biochemical reaction that generates the control variable
b as an explanation for the transition in early development from stable oscillations to
aperiodic oscillations. The variable b in the model (8) represents a control mechanism
of cell cycle progression. In the fast-slow system (9) the slow variables a, b, d are
almost constant, but in the system (8) with the strange attractor (e = 1) and with
the burst (¢ < 1) the variable & can be negative (Figures 3 and 9). If the coefficient b
represents log(cdc25/weel), then b may be both positive and negative number, if the ratio
of cdc25/weel activity is greater or smaller than unity. By investigating the biochemical
properties of the control parameter b, one can easily validate the plausibility of this model.
In the model considered here, the chaotic dynamics are a consequence of the interaction
of the three coupled oscillators. In the chaotic mode this gives rise to a dispersion of
cell cycle times and multimodality. The existence of a cell cycle oscillator with a strange
attractor has previously been considered (Engelberg, 1968; Mackey, 1985; Grasman, 1990;
Lloyd et al., 1992) but here we obtained it from the suggestion about a variability of the
coefficients. In general, it is of interest to establish the regulatory processes controlling
the avoidance as well as the occurrence of chaos (see Hess & Markus, 1987).
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