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Abstract

This paper describes a model of the collective alteration of strategic
types and reports on the results of two simulations based on the model.
In the model, we assume that autonomous robots pursue their own inter-
ests, calculate payoffs using recent information on the distribution of the
population of choosing strategies, and decide their strategy based on these
payoffs. Two simulations were conducted. One assumed global communica-
tion. The second assumed local communication. Collective decision making
with global communication is affected by communication delays. That with
local communication is affected by the way in which strategies are scattered
within a group of robots.

1 Introduction

In response to the requirements of the real world, there has been a notable in-
crease in the amount of study emphasizing the importance of adaptability and
robustness. Study on emergent behavior is a typical example of such study
(e.g. [Brooks 86, Maes 90, Steels 91]). Furthermore, as autonomous robots at-
tract the attention of researchers, a concern over collective behavior or swarm
intelligence has also been increasing. Deneubourg and Goss’s work on ant-like
robots [Deneubourg et al. 91], Beni and Hackwood’s work on swarm intelligence
[Beni and Hackwood 92], and Fukuda's work on cellular robotics [Fukuda et al. 90]
are typical examples of such collective behavior.

Our current goal is to realize and investigate the dynamics of collective decision
making by autonomous robots. In the dynamics, if a small number of robots
change and fix their strategic type, then all the robots should change their strategic
type. ' Imagine a flock of birds or a school of fish. We can see that they collectively
migrate from place to place. When an enemy, such as an eagle or a barracuda,

Lynne Parker describes motivational behavior in the context of Brooks's subsumption archi-
tecture [Parker 93]. Motivational behaviors are intentional, and used by robots to control the
emergence of their primitive behaviors. Decision making, based on the strategies in this paper is
such a motivational behavior. Strategies can be grouped into types. Suppose the case of foraging
robots. They can have multiple foraging strategies to search for food, and can also have multiple
harvesting strategies to collect the discovered food. With only one strategy, the emergence of
primitive behavior would be restricted.
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comes toward them, they will scatter in fright. However, once the enemy leaves the
area, they will again try to reform their previous group. If we view this example
from the aspect of teamwork, we could say that each member is trying to choose
the same strategic type as the rest of the group at any instant. In addition, we
would Like to say that this type of collective behavior is available since they have
shared parameters that yield common worth.

This paper describes a model of collective alteration of strategic types and
presents the results of two simulations: globally communicating robots and lo-
cally communicating robots. The first simulation was inspired by work on com-
putational ecosystems by Huberman and Hogg [Huberman and Hogg 88]. They
reported that communication delay and uncertainty of information introduces a
variety of trajectories, including chaos, into the transient behavior for choosing
a strategy. When a team of robots assumes an equilibrium, it is hard to break
the state because of the restoration force. If we create a strong noise in a stable
state, however, we could break the state. We, then, speculated about how to make
robots create a noise voluntarily in response to stimuli from outside.

The second simulation was inspired by Beckers, Deneubourg, Goss, and Pas-
teels’s work on food recruitment [Beckers et al. 90]. In a society of ants, ants can
use direct but local, one-to-one communication such as tandem-running 2. They
also use an indirect communication device: pheromone 3. These ways of com-
munication are apparently different from the one we used in our simulation of
globally communicating robots. Beckers et al., however, reported a phenomenon
in food recruitment behavior in ant colonies that is very similar to what we made
in [Numaoka and Takeuchi 93, Numaoka 93]. This report caught our attention
and we decided to investigate if the model that we originally devised for glob-
ally communicating robots can still apply to locally communicating robots, with
a slight modification.

The rest of this paper is organized as follows. In the next section, we describe
the essence in a model of collective alteration of strategic type. In Section 3, we
show the results of the two types of simulation and, in Section 4, we overview
some related work. Finally, we conclude the paper in Section 5.

2 A Model of Collective Decision-Making Behavior

In [Numaoka and Takeuchi 93], we proposed a model of collective decision making
behavior in which all robots change their strategic type when a relatively small
number of the robots perceive a disadvantage in their current strategic type and
change it. This model has two features. One is that every robot decides its current
strategy based on its own interests. The other is that such robots can collectively
choose one particular strategic type. In the rest of this section, we will explain
these two features.

2.1 Self-interested behavior

Every robot determines its behavior based on its own interest. In our model, we
assume that all the robots share a restricted set of primitive interests, that are

*The lead ant has recruited a follower to go with it to a food item too large for one ant to
retrieve. (from pp.310 of [Alcock 89])

3 Ants that have found prey lay a pheromone trail from the prey back to the nest, stimulating
others to join them. (from pp.312 of [Alcock 89])
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represented as sirategies. To choose the favorite strategy, they use a payoff as
an indicator to measure the worth of a strategy. In a given interval, the robots
decide their strategy for any type based on the payoff calculated by a payoff
function and distribute it to the environment. The range to which the information
of the decision can reach depends on the case. In [Numaoka and Takeuchi 93,
Numaoka 93], as a particular case, we assumed that the range is infinite. Namely,
each robot can receive information from all the other robots with communication
delay, regardless of its position.
The payoff function used by the robots is defined as follows:

Pi(n(t)) = (U - Tmi(1))(Po + Cni(t)) — Dna(t) > my(2), (1)

J€type(i)

where n;(¢) is the number of robots taking the ¢-th strategy at time ¢ and U, T,
P,, C, and D are positive parameters. type(i)is a function that returns the same
set of strategies as the i-th strategy. The second term is introduced to represent
the loss incurred in mixing different strategic types.

The interpretation of parameters U, I', Py, C, and D fully depends on the
application domain of the robot team that we need. Take a foraging team as an
example. Robots have both foraging and harvesting strategies. In this case, U
represents the utility of the strategy, I' is the positive amount by which the payoff
decreases as each additional robot adopts the strategy, Pp is the payoff accrued
in the absence of any cooperation, C is the extra benefit due to cooperation, and
D is a coeficient to amplify the loss of mixing different strategic types. In every
simulation we made, we gave the same set of parameters to every strategy of every
robot.

For simplicity, we neglect any negative payoffs yielded by Equation (1). Thus,
instead of Equation (1), the following payoff function, which replaces negative
payoffs with a small positive constant value, is used:

Pi(n(t)) = max((U — Cns(8))(Po + Cna(t)) — Dna(t) > 7j(t),  Prmin)- (2)
j€type(d)

This payoff function has the following feature:

Proposition 2.1 The payoff function defined in Equation (2) has multiple equi-
librium states. Fach equilibrium corresponds to one strategic type that is the only
strategic type chosen in the equilibrium.

2.2 Collective alteration of strategic types

Our primary goal is to show that a group of robots with multiple strategic types
has dynamics such that a change in the strategic type in a small number of robots,
in a special mode called instigator, causes the same change throughout the whole
group. This implies, in the underlying dynamics, that a group of robots moves
from one equilibrium to another by being triggered by the migration of a small
number of robots. Such dynamics give powerful adaptability to a group of robots
since even a small change in the environment, recognized by a small number of
robots, can cause a global change in the strategic type.

Two important phenomena, at least, are required for collective change of the
strategic type. They are:

1. serious change in the strategic types of the instigators, and
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2. the widely acknowledged perception of the ineffectiveness of the current
strategic type.
Neither of these can itself be the reason for causing a global change of strategic
type, but, if these two are perceived simultaneously they constitute a good reason
for global change.

'To realize the first phenomenon, we introduce instigator mode robots, which
keep choosing a strategy of a particular type no matter what payoffs they receive.
Suppose that, in the environment, there is a change which the robots can sense
and which, in the light of their current strategies, they perceive as being disad-
vantageous. Under such circumstances, robots enter the instigator mode. For
example, in the case of a foraging team, if robots find a food source, they enter
instigator mode by reducing Us of all foraging type strategies to 0 in Equation 2
while keeping the Us of all harvesting type strategies unchanged. The payoff to
every foraging type strategy becomes P;,. This produces a great gap between
foraging and harvesting strategies. As a result, almost no robots choose foraging
strategies.

The second phenomenon is realized by a special signal issued by instigator
mode robots and by a momentary reduction of parameter U of every strategy by
all robots except for instigators. The robot entering instigator mode broadcasts
a special signal. When a robot receives this signal, the robot reduces the value
of U to every strategy as if the robot’s capability of perceiving the real utility is
atrophied, although we do not want to convince that this solution is realistic.

3 Simulations

Based on the model described above, we made two types of simulation. First, we
simulated a group of robots with an assumption of global communication. This was
reported in [Numaoka and Takeuchi 93]. In this paper, for comparison, we briefly
describe an example to show the phenomenon that we want to realize. Second, we
investigated the case of locally communicating robots. In both simulations, our
purpose was to investigate the dynamics of the collective behavior of autonomous
robots where multiple equilibrium states exist. Especially, we were interested in
the case where partial behavior of the system eventually influences and changes
the behavior of the total system.

For both simulations, we provided 200 simulated robots and two strategic
types. One type has three strategies, while the other has two strategies. For con-
venience, we call the former foraging strategies and the latter harvesting strategies.
In each interval, a robot gets the chosen strategy from other robots and tries to
change its strategy at rate a, the decision rate. For simplicity, when the strategy
changes, robots choose the i-th strategy with probability *:

A
TP

where M is the total number of strategies.

pi = (3)

“In [Numaoka 93], I explain full details of a procedure that robots take for decision making.

5This probability has a normal distribution in proportion to payoffs. In Ceccatto and Huber-
man’s work [Ceccatto and Huberman 89], on the other hand, the probability of choosing the next
strategy involves a temperature-like parameter 4. This actually corresponds to certainty-ness:
perfect knowledge implies 8 = co and maximal uncertainty is denoted by 8 = 0.
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3.1 Globally communicating robots

Robots broadcast their current decision on strategy at given intervals. In this
broadcasting, we presuppose the existence of a communication server that lies
between robots and the communication server. The server has N queues if N
robots exist, thus it can receive information from the i-th robot at the ¢-th queue.
The communication server behaves as follows:

1. The server investigates whether it has received information from all robots

or not. If not, it waits until the condition is satisfied.

2. When the server has gathered information from all robots, it sums up the

number of robots for each strategy.

3. The server sends the information on the number of robots choosing every

strategy to all the robots.
In our simulation, for simplicity, we assume that robots send information syn-
chronously in a given interval and that the round-trip time between robots and
the communication server is constant, which is 7 time units. In this case, the
communication server can get information from the queues in a given interval but
with a certain communication delay.

Again, the dynamics that we want to realize is that in which all robots col-
lectively change their strategic type in response to a change by the instigators.
In [Numaoka and Takeuchi 93, Numaoka 93], we evaluated some aspects of this
dynamics. One attractive study is to investigate the critical ratio of instigators

needed to cause the dynamics. We determined in theory in [Numaoka and Takeuchi 93,

Numaoka 93] that at least 14.4 % robots should be instigator to cause the desired
phenomena. This has been confirmed by our simulation.

In terms of reducing utility, for simplicity, all robots use the following step
function as parameter U in Equation 2:

= 80 if t1 <t < tg;
u) = { 200 otherwise, (4)

where t is 0 when the robot receives a special signal issued by any instigator robot.

To investigate this, we begin simulations with an initial distribution of 67,
67, 66, 0, and 0 to five strategies (the first three are foraging strategies and the
remaining two are harvesting strategies). Namely, robots assume equilibrium for
the foraging strategy. This state is assumed to have existed continuously for at
least 50 time units. This is because we introduce a communication delay of 50
time units. The values of parameters C, I, Py, and D are 0.1, 1.0, 0.2, and 0.1,
respectively.

Figures 1 {a) and (b) show the cases for 27 and 28 instigators, respectively,
where the communication delay is 50 time units, decision rate a is %, and ¢; and
t, in Equation 4 are 20 and 120 time units (tu). It is clear from these figures that
28 instigators is the number required to indicate the boundary if global transition
is to take place. The oscillation observed in Figure 1 (b) becomes sluggish and
converges quickly as the number of instigators increases.

3.2 Locally communicating robots

In this case, we do not assume the existence of a communication server. Instead,
robots have LEDs, the color of which indicates the strategy, and sensors, that can
count the number of LEDs of each color. In every interval, robots decide their
strategy based on the information acquired by the sensor.
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Figure 1: Globally Communicating Robots: Figure 1 shows the transitions of the
number of robots choosing a foraging strategy (n:, solid line) and a harvesting
strategy (ne, dotted line). The condition is that C = 0.1, ' = 1.0, P,/C = 0.2,
Prin = 0.0001, U/I'=200, 7 = 50.0(tu), and a = 1/6 with (a) 27 instigators or
(b) 28 instigators. In (a), after restoring the value of utility U at 120 (tu), ni,
which is for a foraging strategy, gradually increases up to around 60, which is the
state before reducing the value of U. On the other hand, in (b), ns, which is for
a harvesting strategy, gradually increases up to around 80 after oscillations.

In contrast to globally communicating robots, the communication delay in local
communication is negligible. Thus, we ignore communication delay in this type of
simulation. Instead, we focus 1) on a process in which the effect of a local change
of strategic type becomes widespread, and 2) on the pattern that is formed in the
process.

To investigate these issues, we arranged 200 robots in a 10 x 20 rectangular
formation. We assumed a situation where they are collectively moving while for-
aging but keep their position in relation to their neighbors. The distance between
the centers of two robots is 25 units, each robot having a sensing area forming a
circle 30 units in radius. ©

In simulation of globally communicating robots, the values of parameters were

8This type of physical setting is not intrinsic in this simulation. In an investigation of locally
communicating robots, it is sufficient to think of there being a static neighbor relation along which
information is exchanged. Study on harvesting by a group of robots [Goss and Deneubourg 92]
provides an excellent example. In harvesting, ant-like robots forage by using sensing beacons to
make chains. The simulation settings we used here were made in the hope that the result of our
simulation can be applied to such a harvesting robot group.




determined by considering the total number of robots which a robot can determine
at any instant. In the case of locally communicating robots, the number of robots
that any robot can perceive depends on the location of that robot. The dynamics
of collective behavior fully depends on the form of the payoff function, that is,
on the form being determined by the values of parameters. Therefore, the payoff
function shown in Equation (2) requires a slight modification as follows:

Py(n(t)) = max((U' x N(t) — Tni(#))(Py x N (£) + Cni(2))
—Dni(t) > ni(t),  Pumin)- ()

i€type(i)

Here, U’ is a utility for perception of one robot and P; is a payoff for perception
of one robot. * n;(t) is the number of robots choosing the i-th strategy, perceived
at time ¢. N(t) is ©5_; ny(¢). &

In terms of reducing utility, for simplicity, all robots use the following step
function as parameter U in Equation 5:

' 0 ifty <t <ty
Ult) = { 1 otherwise. {6
Again, t is 0 when the robot receives a special signal issued by any instigator robot.

We can suspect that it is not fair to use Equation 5 for the payoff function
of locally communicating robots. In the case of globally communicating robots,
it was an aggregation model since n; is large. On the other hand, in the case of
locally communicating robots, n; is quite small, at the most 10 in our simulation.
In practice, this fact affects the result of simulation. We had to set parameters
in Equation 5 so that the function indicated by the equation is monotonic in the
effective area with respect to n;(t). Otherwise, we would never have observed the
result we wanted.

We. again, began simulations with an initial distribution of 67, 67, 66, 0, and
0 to five stratemes. Namely, the robots assume the equilibrium of a foraging
strateqic tvpe  The values of parameters C, T', Py, and D are 1.0, 1.0, -0.3, and
0.1. respectinely Here, note that P(; is a negative value and D is relatively small.

Figure 2 shows three transient decision making behaviors. In Figure 2 (b),
the case with 2~ instigators succeeds but, if ¢; and £, are 20 and 40 (tu), it fails.
Clearly. success or failure depends on the pattern of distribution of strategies at
the instant that the value of U’ is restored.

Figure 3 shows the characteristic patterns formed by the transient decision
making behavior shown in Figure 2. Instigators are arranged from left to right
and in top-down order. In these figures, a star ‘*’ indicates that a robot at that
position chooses a foraging type strategy and a space ¢ ’ indicates that a robot at
that position chooses a harvesting strategy.

We can observe one distinctive characteristic from these figures. After the
value of L is restored (generation 72), in the failure case, lines, in which the type
of strategy being chosen by the instigators is dominant, appear alternately. On
the other hand, in the successful case, at generation 72, a nucleus colony of the

U’ and P: are approximately U/N and P;/N, respectively. Here, U, P;. and N are those in
Equation 2.

8In this simulation, robots in the middle of the rectangle can perceive 9 robots including
themselves at any instance. Robots at the north, east, south, and west edges can normally
perceive 6 robots, and robots in the north-east, north-west, south-east, and south-west positions

can perceive 4 robots.
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Figure 2: Locally Communicating Robots: Figure 2 shows the transitions of the
number of robots choosing stra,tegles under the condition that C = 1.0, ' = 1.0,
Py/C =-0.3, Ppin = 0.0, and U'/T=20.0. t; and ¢, are 20 and 70 (tu) from the
beginning. In (a), there are 10 instigators. In (b), there are 28 instigators. n;
indicates the number of robots choosing the i-th strategy. ni, ns, and ng are for
foraging strategies whereas ny and ns are for harvesting strategies. In (a), it is
found that, after restoring the value of U', n, for a foraging strategy increases
along with ns for a harvesting strategy. Since two strategic types are mixed, this
is an example of failure. On the other hand, in (b), only n4 for a harvesting
strategy increases and converges whereas all foraging strategies have disappeared.
Therefore, this is an example of success.

target strategic type is formed around the instigators. From this nucleus colony,
the influence spreads to the state shown in Figure 3 (f).

4 Related Work

Autonomous robots have the advantage of being adaptable and robust in a dy-
namic environment. On the other hand, they have the disadvantage of not being
fully controllable from outside, although it is possible to give direction to emergent
behaviors. In a sense, they are self-interested entities pursuing their own interests.
Because of this self-interested nature, it is questionable whether they would be
able to cooperate as a group.

Deneubourg and Goss’s work on ant-like robots [Deneubourg et al. 91] pro-
vides one encouraging example where such self-interested and primitive entities
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Figure 3: Patterns of Strategy Distribution: Figure 3 shows the patterns in gener-
ations 72, 100, and 600. (a) through (c) depict the distributions for 10 instigators,
which is an example of failure. (d) through (f) depict the distributions for 28
instigators, which is an example of success. In (d), we can find the formation of a
nucleus colony in the top three lines. Based on the colony, the effect is distributed
over the robot team ((e) and (f)).

can adopt cooperative and beneficial behavior, where ant-like robots sort objects
into piles of the same type. This is a good example of the kind of robotic system
that we would like to realize.

Beckers, Deneubourg, Goss, and Pasteels also reported on the quite atiractive
collective behavior [Beckers et al. 90] seen in real ant colonies. This is a trail
recruitment system for selecting between two food sources. Pheromone is used as
the communication medium. In their paper, Beckers et al. discuss the necessity
of direct transmission, in this case, worker-to-worker transmission of the food
location. They say that, without direct transmission, a newly discovered source
can never attract ants working at an old food source. Thus, a forager must actively
invite nest-mates on the principal trail to deflect them to the new source.

5 Concluding Remarks

Our long-range goal is to construct teams of robots that engage in tasks that
require mass effect such as foraging, fire-fighting, forest rescue work, poisonous gas
detection in factories, or mine detection in deserts. To progress toward this goal,
we are now concentrating on discovering any meaningful collective behavior and
inventing a technology to realize such collective behavior in a team of autonomous
tobots.

In this paper we first described a model of collective alteration of strategic
types. This model makes it possible for all other robots to follow and choose
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that type when a small number of robots, called instigators, change and fix their
strategic type. This model is characterized as follows:

o Hach robot’s interests are represented as strategies. Strategies are grouped
into strategic types. The power of an interest is relative to its payoff, as
calculated by a payoff function. The payoff function reflects the populations
of robots choosing given strategies.

¢ Robots, if they perceive a critical state in their environment, enter an in-
stigator mode. Instigators always choose only one particular strategic type.
The role of the instigator resembles that of the recruiter in the ant colony
described above.

o To spread the effect of instigators choosing one particular strategic type,
a special trigger is used that is probably issued by the instigators, all the
robots control one parameter U in their payoff functions.

Based on this model, we devised two types of simulation. The first simulation
was devised to investigate the effect of global communication on the collective
alteration of strategic types. As the results show, we found a critical ratio that
causes a collective alteration of strategic type. This ratio was also proved in a
theory described in [Numaoka and Takeuchi 93]. Furthermore, although we did
not present it in this paper, we found that communication delay seems to play
an important role in transition between the equilibrium points in a multi-stable
system [Numaoka and Takeuchi 93].

Some would claim that the assumption of global communication in a team
is not realistic. There may be many reasons for making such a claim. Some
would mention the technological issue. I would respond to this claim by saying
that it is. in principle, realistic if we consider satellite communication, although
many issues still require consideration. One consideration would be the issue that
the communication server would form a bottleneck. Actually, the communication
server would be required to conduct pipeline processing. Another issue would that
of the robustness of the communication server.

We would like to say, nevertheless, that the assumption is still realistic if we
look at an example in human society. In fact, we benefit from such global com-
munication. especially in the stock market. People in the stock market decide
whether they should sell or buy a stock based on the information indicated on the
board. This 1s the mechanism that we would like to realize in a team of robots.

The purpose of the second simulation was to investigate the phenomena in
collective decision making under local communication conditions. Unlike globally
communicating robots, a communication delay in a restricted neighborhood rela-
tion i1s not so problematic. Thus, we can neglect the factor of communication delay
in this simulation. Instead, we are interested in examining the relation between
the patterns that appear in the transition of collective decision making and the
results of collective alteration of strategic type.

Through the second simulation, we determined that one important factor
makes the result successful. This is a form of the payoff function with particular
parameter values. In the first simulation, the payoff function is non-monotonic in
[0, 200] with respect to the number of robots choosing the i-th strategy, n;. On
the other hand, in the case of locally communicating robots, the payoff function
seems to monotonically increase the effective area with respect to n;, thus pro-
ducing successful results. The effective area is, for example, [0, 9] if the number
of perceived robots is 9. If the payoff function is non-monotonic, the population
distribution tends to level off across all the strategies. Therefore, the set of param-
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eter values is chosen such that it makes the payoff function monotonically increase
in the effective area.

The second simulation revealed the following fact about the relation between
patterns and results. Namely, it is necessary for robots to collectively alternate
their strategic type such that a nucleus colony forms around instigators where all
robots in the sensing area choose the same strategic type.

We were also interested in a well-balanced distribution of populations between
multiple strategies in a chosen strategic type. In global communication, we suc-
ceeded in realizing a well-balanced distribution. However, in local communication,
a well-balanced distribution was not realized. This point requires further analysis
in the future.

The simulated robots we investigated here do not have any learning capability.
By introducing a learning capability, the performance of collective work would be
improved. We are now investigating how we can introduce reinforcement learning
technology (e.g. [Lin 91, Kaelbling 92]) into our model.

Finally, we would like to note a critical distinction between globally communi-
cating robots and locally communicating robots. The dynamics of decision making
behavior by globally communicating robots are sustained by aggregate effect. With
respect to this viewpoint, analysis such as that done by Huberman and Hogg in
their model of computational ecosystem is possible. We suspect, however, that
it is difficult to view the case of locally communicating robots as an aggregate
system. We speculate that a modeling using cellular automata [Wolfram 86] or
percolation [Grimmett 89] would be appropriate for analyzing the case of locally
communicating robots. An attempt to make such a model would also be fruitful
future work.
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