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Abstract

The prisoner’s dilemma (PD) is a well known metaphor for the evo-
lution of cooperation in populations of selfish individuals. In the simple
(non-repeated) PD it is always best to defect, but cooperation becomes
a promising option if the game is repeated (i.e. if the individual play-
ers follow certain strategies, can recognise other players and remember
past encounters) or if spatial effects are included (here one can neglect

any strategical elaborations or memories).

The paper consists of two parts. The first deals with the evolution-
ary dynamics of the iterated PD. Very simple strategies can lead to a
complex, chaotic dynamics. In heterogeneous populations of probabilis-
tic (erroneous) strategies tit-for-tat (TFT) can catalyse the emergence
of cooperation, but is usually replaced by the more forgiving generous-
tit-for-tat (GTFT).

In the second part of the paper it is shown how spatial structures
can lead to coexistence between cooperators and defectors in a purely
non-repeated PD. Such spatial games can give rise to an enormous
complexity of chaotically changing, fractal-like patterns. Spatial games

lead to a series of new and interesting problems and can defy intuition.
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1. Introduction

The Prisoner’s Dilemma (PD) is a two-player game: each player can opt
for one of the two strategies C' (to cooperate) or D (to defect). If both players
cooperate, their payoff R is higher than the payoff P for joint defection. But
a player defecting unilaterally obtains a payoff T' which is larger than R, while
the opponent ends up with a payoff S smaller than P. In addition to this rank
ordering, one usually also assumes 2R < §+47T. The rational decision, in this game,
is to play D, since this yields the higher payoff no matter whether the opponent
uses C or D. As a result, both players defect and earn P instead of the larger
reward R for joint cooperation.

If the probability that the players repeat the interaction is sufficiently high,
there is no longer a single best strategy for this ‘iterated prisoner’s dilemma’
(IPD). But a series of computer tournaments by Axelrod (1984) established the
success of a remarkably simple strategy, TFT (Tit For Tat), which consists in
playing C' in the first round and from then on repeating whatever the adversary
did in the previous round. This led Axelrod and Hamilton (1981) to use the ITPD
for explaining the evolution of cooperation in biological interactions on the basis
of reciprocity. This approach has proved to be extremely fruitful. It is not the
only paradigm, but certainly the most current in the field (May 1987, Axelrod &
Dion 1988, Dugatkin et al 1992).

While reciprocal interactions abound in nature, it is usually difficult to find
clear-cut empirical evidence for the implementation of the T FT-strategy (Wilkin-
son 1984, Milinski 1987, Reboreda & Kacelnik 1991). Furthermore, the un-
certainties and mistakes surrounding most biological interactions penalize TFT-
populations, since any accidental defection entails a series of alternating retali-
ations. This vulnerability to errors is not evident under the clinical conditions
of computer runs. In applications, however, it should not be overlooked. More-
over, a T F'T-population can be subverted, through random drift, by unconditional
cooperators who in turn can be invaded by defectors.

Sections 2 and 3 deal with the evolutionary dynamics of the iterated PD and
contain summaries of Nowak & Sigmund (1992, 1993). Section 5 gives a brief
overview of the spatial PD (Nowak & May 1992, 1993).

2. Tit-for-tat catalyses cooperation

A reactive strategy is given by two probabilities p and g to cooperate after a
C (resp. D) of the other player. TFT corresponds to (1,0), AIID to (0,0), AlIC

to (1,1), and so on. We shall be mostly interested in properly stochastic strategies
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where the values of the probabilities are strictly larger than 0 and smaller than
1. For the sake of simplicity, we consider only the infinitely IPD. In this case, the
initial move plays no role, since its effect will be forgotten’ in the long run.

We use the usual game dynamics to study the evolution of representative
samples of reactive strategies. If z; denotes the freqency of strategy : in one

generation, then its frequency in the next generation z} will be given by

zh = z; fi(z)/f. i=1,2...75

Here fi(z) denotes the average payoff for strategy ¢ in a population where the
frequencies of the strategies are given by z = (z1,...,Zna), and f =3 zifi(z) is the
average payoff in the population. Initially, all strategies are equally represented.

If we choose n = 100 different reactive strategies from a uniform distribution
on the unit square, then the evolution proceeds in most cases towards the vicinity
of AIID: those (p, g)-strategies from the sample which are closest to (0,0) increase
in frequency from generation to generation, while all other strategies vanish. This
is an obvious consequence of the fact that a large percentage of the random sample
has high g-values and therefore does not relataliate against exploiters. With such
a rich diet of 'Suckers’, it pays to defect.

The outcome changes drastically if one of the initial strategies is added by
hand or by chance TFT, or a close neighbour of it. The first 100 generations are
practically indistinguishable from the previous run. The strategies in the vicinity
of AliD grow very fast. In our plot, where strategies with very low frequencies are
no longer visible (although they are still present in the numerical computations),
TFT and all other reciprocating strategies (with values close to (1,0)) seem to have
disappeared. But an embattled minority is still present, and fights back. The tide
turns when (after some 150 generations in our simulations) the ’Suckers’ with high
g-values are decimated to such a point that exploiters can no longer feed on them.
Slowly at first, but with ever increasing momentum, the reciprocators come back.
It is the exploiters turn, now, to vanish from the stage. But the TF'T-like strategy
which has been added, and which caused this reversal of fortune, is not going
to profit from it: after having eliminated the exploiters, it is superseded by the
strategy closest to GTFT, which is defined by (1,¢), where g = min{l — (T —
R)/(R - S),(R— P)/(T - P)}.

These simulations exhibit very clearly that TFT acts as a catalyser for the
emergence of cooperation. It is essential for the reaction toward cooperation to
get going. It needs to be present, initially, in a very small concentration only; in
the intermediate phase of the reaction, its concentration is high; but in the end,

only a trace remains.
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3. Chaos and cooperation

Next we consider strategies which are entirely specified by the outcome of the
previous round. Such strategies can be described by a quadruple of four param-
eters, (p1,p2,ps,p4), which denote the probabilities to cooperate after receiving
payoff R, S, T, and respectively P, in the previous round. For example (0,0, 0,0)
is the deterministic rule that always defects (AllD), while (1,0,1,0) plays TFT.
The rule (1,0,0,0) plays GRIM: after a single D of the adversary, it never reverts
to C again. The rule (1,0,0, 1) cooperates whenever both players choose the same
action in the previous round. It fares poorly against AllD, since it reverts each
second round to C. For this reason, it has been called ’simpleton’ by Rapaport
and Chammah (1965). We think that this appelation is not entirely deserved;
following Kraines and Kraines (1988), we prefer to call it PAV LOV, since it re-
sponds to positive and negative conditioning (switching its behaviour whenever
one round’s payoff is lower than R). There are 16 deterministic rules altogether,
which we number from 0 to 15 (the :-th quadruple being the binary expression for
¢). The strategy corresponding to rule 7 will be denoted by S;. Thus Sy is AllD,
Sois PAVLOV. 5101s TFT, and Sy5 is AlIC. The S; strategies are exactly the 16
corner points of the four dimensional strategy space formed by all (p1, p2, ps, ps)
strategies.

We shall now take uncertainty into account by replacing in the quadruples 1
by 1 — ¢ and 0 by e. The small probability e describes the frequency of errors.
If € > 0 the first round no longer matters. The total payoff can be defined as
the limit of the mean payoff per round. Among the 16 S; strategies AllD and
GRIM are the only evolutionarily stable strategies (ESS). There are 3 strategies
that receive a payoff very close to full cooperation (R = 3) when playing against
themseleves, these are AlIC, (1110) and PAVLOV.

We now consder a large population of players using the strategies Sy to Sis.
By z,, we denote the frequency of S; in a given generation. In each generation all
the strategies play the infinitely JPD among each other (subject to a small error
frequency ). It is easy to compute the average payoff f; for an S;-player (which
depends on the composition of the population). The evolutionary dynamics map
the frequencics r, after one generation into z! according to the following rule: first
selection provides each Si-strategist with a number of offspring proportional to its
expected payoff f; (the higher the payoff, the more offspring). To this is added
a tiny number of invaders, u, which may be caused by mutation. This yields a
deterministic recurrence equation for the frequencies of the strategies:

i fi
> xifi

+u)/(1 + nu). R

=
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Here n denotes the total number of strategies in the population.

This modification of the usual game dynamics allows for recurrent and simul-
taneous invasion attempts. The resulting dynamics can exhibit complicated peri-
odic and even chaotic orbits. The strategies Sy, Se, S7 and Si2 are almost driven
to extinction, but the other strategies and the total payoff for the population dis-
play violent oscillations (with large amplitudes for strategies Sp, 51, S8, 59, S10 and
S11). For small invasion rates, the minima of their frequencies are very close to 0,
except for the TFT-like strategy Sio, which is best protected against extinction
and is in this sense the “safest bet”. But whenever the proportion of T F'T-players
is large, they are superseded by the more generous strategy Si; (whose transition
rule (1,0,1, 1) forgives a defection by the other player if it was matched by an own
defection) and PAVLOV (Sy). The S1; and PAVLOV population, in turn, is
invaded by the parasitic 57 (which cooperates only if its defection has met with
instant chastisment). This paves the way for the strategies close to AllD (So)
and to GRIM (Ss), which in turn leads to the resurgence of TFT. This is the
main cycle in the selective mechanics: but the other strategies introduce the twists
leading to chaos. Simple strategies in the iterated prisoner’s dilemma can lead to

very complicated evolutionary dynamics.
4. Spatial dilemmas

Let us imagine that populations are not completely homogeneous but have
certain spatial structures. Let us imagine that animals or molecules are located
at certain positions (territories, patches, pixels or cells) and are more likely to
interact with their neighbours (= individuals at a closer distance). Therefore the
probability that a certain phenotype, A, interacts with another phenotype, B,
is no longer just the product of their relative frequencies in the population, but
depends in a non- trivial way on the spatial structure of the population.

Let us consider two different strategies C (for cooperation) and D (for defec-
tion). If two cooperators interact both receive 1 point. If a defector ‘exploits’ a
cooperator, the defector receives the payoff b and the cooperator 0. The interac-
tion between two defectors also leads to the zero payoff. This game is designed
to keep things as simple as possible, without changing the essential properties of
the prisoner’s dilemma. In fact there is only one parameter, b, the advantage for
defectors.

This game is now played on a two dimensional square lattice. Each position
is occupied either by a cooperator or a defector. In each generation the payoff of
a certain individual is the sum over all interactions with the 8§ nearest neighbors

(the cells corresponding to the chess king’s move) and with its own site. It seems
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reasonable to include this self interaction, if one assumes that several animals (a
family) or molecules may occupy a single patch. But the general properties of the
game do not depend on this assumption, and we have also explored the situation
without self interaction.

In the next generation an individual cell is occupied with the strategy that
received the highest payoff among all the 8 immediate neighbours of the cell and,
of course, the cell itself. Thus whatever happens to a cell depends on the state of
the cell, the 8 neighbours and their neighbours. These are altogether 25 different
cells. In the terminology of the cellular automata literature our simple game is
characterised by a transition matrix with 22° different rules. That is, in cellu-
lar automata terms the rules are very complex; our underlying biological ‘game’,
however, enables the rules to be stated very simply.

The rules of our game are now completely defined. The game is determinis-
tic. The outcome depends on the initial configuration and the magnitude of the
parameter b.

There are three classes of parameter regions.

(i) If b < 1.8 then only C clusters keep growing.

(i) If b > 2 then only D clusters keep growing.

(iii) If 1.8 < b < 2 then both C and D clusters keep growing.

For b = 1.15 almost all cells are occupied by cooperators . Defectors occur
either in single isolated cells, which oscillate between 1D and 9D, or in stable
unconnected short lines. For b = 1.35 the lines of defectors become connected. The
basic oscillators are again single defectors , but the end of lines can oscillate, too.
These oscillators are generally of period 2. For b = 1.55 there are long connected
lines and whole lines can oscillate (usually with period 2). Single defectors now
oscillate with period 3 (a 1D — 9D — 5D — 1D - oscillator). The interaction
between large structures can lead to oscillators with very high period. Things are
different for b = 1.79. Here the pattern is almost completely static. An irregular
network of defectors runs over the whole area. For b = 1.85 the structure appears to
be completely chaotic. There are about 31% cooperators. A large fraction of cells
is changing from one generation to the next. The world is covered with defectors ,
but cooperators exist in many small clusters. These clusters have the tendency to
grow. But whenever two such clusters come too close the defectors between them
get high payoffs and start to grow. The cooperators win along straight lines, the
defectors win along irregular boundaries. The result is a dynamic equilibrium. It
is an always changing, but dynamically stable dimorphism. For b = 2.01 another

static pattern is observed.
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An interesting sequence of patterns emerges if a single defector invades a world
of cooperators in the parameter region 1.8 < b < 2. In generation ¢ = 0 we start
with one defector. This defector first grows to form a 3 X 3 and then a 5 x 5 square
of defectors. The payoff for the defectors at the 4 corners of this square is 5b (which
is larger then 9). The payoffs for the defectors along the edges of the square is 3b
(which is smaller than 6). Therefore the defectors gain at the corners but loose
along the lines. The result is a interesting and beautiful growth pattern. We can
study these patterns in a finite world (with fixed or cyclic boundary conditions)
or in an - effectively— infinite world.

When a single defector invades an infinitely large array of cooperators, we
find fractal like structures that repeat themseleves. The whole D-structure takes
a square shaped form always at the generations which are the powers of 2. For
t=0,1,2,4,8 and 16 these squares only consist of defectors. For ¢ = 32 there are
8 clusters of cooperators left over, but they disappear in the next generation. For
higher generations the squares contain many clusters of cooperators, which can
persist. The frequency of cooperators within the growing square-like structure of
defectors converges to z ~ 0.318 which is the same value as in the simulations with
random initial conditions. A handwaving, but interseting approximation leads to
z =~ 12log2 — 8 = 0.3178.. (which is in excellent agreement with the observed
value).

Spatial games can be played on regular and random grids, in or 3 dimensions
the transition rules can be deterministic (as above) or stochastic (for example by
giving a cell in the next gemeration to one of its neighbours with a probability
proportional to this neighbour’s payoff). Time can be measured in effectively dis-
crete generations (with an interaction phase followed by a reproduction phase — as
above) or continuously (where interaction and reproduction occur simultaneously
— see Huberman 1993). In these different approaches we find that cooperators
and defectors can coexist under a variety of conditions (Nowak, Bonhoeffer, May
1993).

For many kinds of ‘evolutionary games’, we find that the outcome of frequency
dependent selection can be changed (and reversed) if spatial effects are taken into
account. The simplest deterministic models of frequency dependent selection can
lead to a rich variety of spatial and temporal dynamics. The success of a given
strategy depends on the spatial structure of the population. Selection works on
spatial structures.

One of the appealing aesthetic elements in the present approach is the com-
bination between temporal chaos (the unpredictable oscillations of the frequencies

of the individual strategies) and highly symmetric fractals. The kaleidoscopes of
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spatial evolutionary games have many applications in the ‘real world’: there is a

new industry for tiles, carpets, T-shirts, rose windows and lace doilies.
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