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Abstract

The effects of ionic charge and of an externally applied electric field have
been studied both for the simplified (electrical field intensity is constant in
space) and for the first time also for the full (spatial electrical field intensity
and charge variations considered) ionic Brusselator models. Consideration
of ions instead of neutral reaction components causes shifts in the location
of bifurcation points of spatial patterns and strongly affects the amplitude
of the observed patterns. An imposed electrical field can change the sym-
metry of patterns. Variations in the field strength may also change fluxes
at the boundaries. If the externally imposed field strength is varied in a
cyclic fashion the fluxes at the boundaries display hysteresis under certain
conditions. In the full ionic Brusselator model an imposed electrical field
of certain intensity causes stationary patterns to turn into travelling waves.
In the simplified model no field induced waves were observed. When zero-
diffusive flux boundary conditions are used, oscillatory behaviour of spatial
patterns and bistability of fluxes at the system boundaries occur at low values
of imposed electric currents. Coexistence of steady and oscillatory patterns
along the system coordinate was found at high intensities of the applied
electrical field.




Introduction

Recent observations of patterns generated via the Turing instability in chem-
ical reaction-diffusion systems (Castets et al 1990, Ouyang and Swinney
1991a,b, Noszticius et al 1987, Kshirsagar et al 1991) focussed the interest on
stationary spatial patterns. However, still a little is known about the effects
of electric charge of some components and of an externally applied electrical
field. Equations describing the effects of electrical field on wave propagation
were derived and qualitative experiments confirming the stopping and anni-
hilation of waves in the reaction mixture of the Belousov-Zhabotinski (BZ)
reaction were performed (Schmidt and Ortoleva 1977,1979,1981, Feeney et
al 1981, Ortoleva 1987). The dependence of the pulse wave velocity in the
BZ-like reaction mixture and of the front wave velocity in the iodate-arsenite
reaction on the electric field intensity and on concentrations of reaction com-
ponents was studied experimentally (Sevéikovd and Marek 1983.1984,1986).
The process of wave splitting has been recently studied in detail (Seveikova
et al 1992). Effects of electric current on spiral waves in the spatially quasi-

twodimensional BZ reaction mixture have been studied experimentally (Schiitze

et al 1992, Pérez-Muiiuzuri et al 1992). The wavelength and the period of
spiral waves depend on the electric current intensity and the core of the spiral
can be moved by the electric field.

Simplified descriptions of ionic reaction-transport systems based on the
assumption of constant electric field intensity valid particularly for solutions
of high ionic strength with high mobilities and relatively slow reactions were
used until now (Nazarea 1978, Kondepudi 1980, Kondepudi and Prigogine
1981, Almirantis and Nicolis 1987). It was shown, mostly by approximate
analytical methods, that weak electrical field can shift the bifurcation points
and influence the selection of polar symmetry of stationary spatial pat-
terns. It was also illustrated that the constant electrical field model can de-
scribe experimentally observed phenomena in media with high ionic strength
(Seveikovd et al 1984).

Limitations of the simplified model approach can be evaluated only by
comparison with the description based on the considerations of the spatiotem-
poral distribution of the charge in the medium (Snita et al 1987,1993). The
results are particularly important for the understanding of patterns formed
in cells and membranes under the influence of both an internally generated
and an externally imposed electrical field. In this work we present numer-
ical studies on pattern formation, branch selection and stationary pattern
destruction in an ionic version of the Brusselator model located in a one-
dimensional reaction-diffusion medium.

1 “Ionic Brusselator” models

The Brusselator reaction scheme assuming electrically charged components
can be, for example, written as (Kondepudi 1980, Kondepudi and Prigogine
1981):
At = X¥
k
B-+Xt 2 Y*4+D
oX*t +Y+ 2 3x*
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In the course of the paper we will call this scheme "BI1”. The same scaling of
system variables as in non-ionic Brusselator scheme (Nicolis and Prigogine,
1977) was adopted. The Nernst-Planck equation was used in the balance
equations for X and Y to describe their diffusion and migration fluxes. If
high ionic strength of the reaction medium is assumed and/or the rates of
reactions are moderate the electrical field strength (i.e. the gradient of the
potential V@) may be considered to be approximately constant. The final
balance equations then are:

%_X = A—(B+1)X + X% + Dx(~VX - V4 + VX)
-
63_‘: = BX — XY + Dy(—VY - V4 + V?Y) (1)

If the assumption of constant V¢ is not valid both charge balance and lo-
cal electroneutrality have to be taken into consideration. The scheme BI1
contains not only X and Y+ but also four additional ions A*,B~,D~ and
E*. This makes the rigorous analysis complicated. Hence we used a some-
what simplified scheme BI2. In this scheme only one nonreactive anion C'~ is
present, formed together with Xt from an electrically uncharged component
A. This also enables us to assume B, D and E to be uncharged components
not contributing fo the local electric field:

A B Xxtyc
BiXF B O YELD
axX+Lyr B gxt
x+ B x+

xt*yc- g

We will call this extended Brusselator scheme "BI2”. The last two steps
ensure that the rate equations for the local chemical kinetics are the same
for the original and the above modified scheme. The same scaling as in the

original Brusselator was used together with the scaling of C~:
k
CC =C= (k_3)1/ 2

4

Co—
A and B are treated as parameters of the model. At each point of the system

the concentration C of the counterion C~ and the value of the current I
passing through the system are given by

Q=Y ZCi=X+Y-C=0 (2)

=Y ZJi=Jx +Jy — Jo (3)

Here, X and Y denote the dimensionless concentrations of X+, Y*; Q is
the dimensionless charge Q = gq/(F(ks/k3)/?) (F: Faraday constant), Z; is




the charge number of the component i and I is the dimensionless current
I = i/(Flo(k3/ks)*/*) with I, being the characteristic length. The balance

equations for X,Y and C are (Snita et al 1993):

%)i = —V-Jx+A—(B+1)X+ XY
=
%—1; = —V.Jy+BX-XY (4)
9 = V.- Jg+A-X
or
The charge balance is a linear combination of the balances (4).
0Q N
3 = -V.-I=0 (5)

The current I may be assumed to be constant in a onedimensional system
and it provides an additional parameter of the model. The fluxes Jx,Jy and
Jc follow from the Nernst-Planck equation:

' J; = —D;VC; - Z;D,C:V¢ (6)

where D; is the dimensionless diffusion coefficient of species i. Using Egs.
(2), (3) and (6) the electrical field intensity can be eliminated from the model
equations. The balance of C may be expressed in terms of X and Y and the
model is completely described by the balances of X and Y and the balance
of the charge. The resulting balance equations were solved using a method
of the Crank-Nicolson type with adaptive space and time step control. The
local electrical field intensity may be calculated as

_I 4+ (D_x - DG)VX+ (Dy — DC)VY (7)
(Dx + Dg)X + (Dy + Dc)Y

According to Gauss law of electrostatics the local charge density can be
evaluated from the spatial derivative of the electrical field intensity:

Q- —Ev' Q

where Ip denotes the Debeye length Ip = ((eRT)/(F?(ks/k3)/?))"/* and e
is the permittivity assumed to be constant due to an excess of solvent. It is
well known that the assumption of local electroneutrality (Eq. (2)) is valid
for Ip < [o.

In the present work we have considered either a spatially one-dimensional
system or a two-dimensional rectangular system. We have used boundary
conditions of different types and symmetries:

a) Dirichlet boundary conditions with X and Y fixed to their equilibrium
values,

b) Dirichlet boundary conditions with X and Y fixed to non-equilibrium
values,

c) Dirichlet boundary conditions with asymmetrically fixed boundary con-
centrations,

d) zero-derivative boundary conditions. In this case, with respect to the
Eq.(6), only the migration of ions due to the electric field is allowed at
the system boundaries.
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2 RESULTS

2.1 Equilibrium boundary values

It is known (Nicolis and Prigogine 1977, Dellnitz et al 1991) that the sym-
metry of patterns generated by the non-ionic classical Brusselator changes
with the dimension of the system. Using the actual parameters of this work
the classical Brusselator in a spatially one-dimensional system exhibits sym-
metric Turing patterns up to a length of L = 0.422. In larger systems the
symmetric solution is unstable and two complementary asymmetric patterns
are obtained instead. In the ionic Brusselator (BI2) this symmetry-changing
bifurcation is shifted towards higher system sizes. Fig. la shows the sym-
metric solution (thin line) obtained from the ionic Brusselator (BI2) at a
system length of L = 1.375. Increasing the size of the system creates two
complementary asymmetric solutions, one of which is shown in the figure
(thick line). The sum of these two newly created solutions exhibits the same
symmetry as the previous symmetric pattern. Therefore, the symmetric so-
lution may be considered to arise from the collision of the two asymmetric
patterns. All these patterns differ with respect to their fluxes at the bound-
aries, i.e. in the way they interact with their environment. Whereas the
fluxes for the symmetric pattern are of opposite sign but equal magnitude
at the boundaries, the fluxes of the asymmetric patterns posess equal sign
and differ in magnitude. For a system of length L=1.40 the fluxes of, e.g., X
at the boundaries of the unstable symmetric pattern are Ji.5; = 4.52 % 1072
and Jrgne = —4.52 * 1072, for the stable asymmetric patterns the fluxes
Jiest = —2.70% 1072 and Jyigp = —4.26 + 1072 (vice versa for the second pat-
tern) are found. Hence the bifurcation into asymmetric patterns is connected
with an approximately two-fold decrease of the flux at one of the boundaries
of the membrane.

In Fig. 1b,c the profiles of the electrical field intensity and of the charge
density derived from the symmetric profile in Fig. la are displayed. The
different mobilities of the ionic compounds generate internal inhomogeneities
of the electrical field and of the charge density even in the absence of an
external electrical field. These inhomogeneities strongly affect the transport
of ions in the system.

An external electric current of the strength I = 4-2.5 destabilizes one of
the two complementary patterns mentioned above and only one solution is
obtained, no matter to which of the two profiles the current is applied. The
direction of the current determines which pattern is favored (cf. Fig. 2). The
patterns are somewhat distorted by the external field and the fluxes of X at
the boundaries are Ji.;; = —2.63 * 1072 and Jrign: = —4.25 * 10~2 and vice
versa, mainly dominated by the diffusive contribution to the transport rather
than by the electrical one. This clearly demonstrates that the switch between
mutually symmetric patterns caused by a weak electrical field is reflected in
a large change of the flux in or out of the system. The distorted patterns are
stationary until the current reaches a value of 7 = +4.9.

The effect of increasing ionic strength of the reaction medium can be in-
vestigated by adding a nonreactive cation K+ with the same diffusivity as
C~ to the scheme BI2. The concentration of the negative counterion C~ is
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then given by C = X +Y + K, where X, Y and K represent the dimension-
less concentrations of X+, ¥+ and K. In this case, increasing the boundary
values of K will increase the ionic strength in the system and decrease the
spatial variations of the internal electrical field. Without an externally ap-
plied electrical field the simple model (Eq. (1)) shows the sharper profile
shown in Fig. 3 (light line). The corresponding profile obtained from the
full model BI2 with K = 0 is shown in the same figure (heavy line). As the
value of K at the boundaries is increased, the pattern for the full model BI2
approaches the pattern formed in the simple model at K(0) = K(L) = 8.5.
This numerical experiment demonstrates that the simplified model may be
viewed as a special case of the full model description valid for high ionic
strength, high mobility of ions and moderate reaction rates.

2.2 Asymmetrically fixed boundary values

In biological systems membranes commonly separate compartments of dif-
ferent composition and their boundaries display only low symmetry. We
therefore performed numerical simulations with asymmetrically fixed bound-
ary conditions At L = 0 the intermediates X and Y were kept at their
equilibrium values A and B/A, respectively. The second boundary, however,
was considered to be connected to a domain where X and Y can only reach
75% of their equilibrium values. Without an externally applied current two
patterns coexist which differ in the fluxes at their boundaries.

Fig. 4a,b shows the two patterns obtained with the non-ionic classical
Brusselator and Fig. 4c,d displays the corresponding solutions of the full
ionic model BI2 without an external electrical field. It is seen that the wave-
length of the pattern increases if charged intermediates are assumed. For one
solution also the wavenumber decreases if the intermediates are charged. In
Fig. 5 the fluxes at the boundaries are drawn as a function of the current
driven through the system.The fluxes at L = 2 only slightly and almost lin-
early increase with the current. In the vicinity of the boundary at L = 0
the effects of the current are larger. At low values of the current the two
patterns of Fig. 4c,d still coexist though they get more and more distorted
as the absolute value of the current increases. Beyond a certain threshold
value of the current in either direction (I; = —2.95 and I}, = 2.13) the pat-
tern with negative fluxes at the boundaries disappears and only one solution
is obtained. Further increase of the current leads to travelling waves. The
simple model does not show any oscillations induced by the electrical field.

2.3 Zero-derivative boundary conditions

Using zero-diffusion flux boundary conditions the classical non-ionic Brusse-
lator with the parameters used in this work undergoes a Turing bifurcation
at the critical value of B. = 4.132... At lower values of B only flat profiles
of X and Y are formed. Assuming the scheme BI1 (Eq. (1)) the value of B,
decreases if an electrical field is applied. Asymmetrically distorted stationary
patterns now develop even at values of B < B.. The new critical value B:
is decreased as —V ¢ increases. The same conclusion had been obtained ear-
lier (Nazarea 1978, Kondepudi 1980, Kondepudi and Prigogine 1981) by an
application of approximate analytical method. In Fig. 6 the response of the
patterns to an externally applied electrical field is displayed for Eq. (1). The
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wavelength of the pattern increases with the electrical field and the peaks
corresponding to high concentration of X are shifted out of the system at the
left boundary. Correspondingly, the concentration of X and Y at this bound-
ary will vary with the field in an almost cyclic manner as consecutive peaks
are shifted over the boundary. The fluxes of X at the boundaries are shown
in Fig. 7. While the flux increases monotonically with the external field at
one boundary, it alternates at the second. Again, no oscillatory behaviour
was induced by the external field.

When the full model for the scheme BI2 is solved with the zero-diffusional
flux boundary conditions the following types of system behaviour can be
observed:

At low values of the parameter B steady spatial patterns are evoked by
the nonzero electric current passing through the membrane, even for values
of B at which only spatially homogeneous steady state exists under the zero
current or in the non-ionic Brusselator. The critical value B, is remarkably
lowered in the ionic system with current passing through the system com-
pared to the critical values of non-ionic Brusselator (Nicolis and Prigogine
1977). The patterns evoked by the current are strongly asymmetric. These
results are in qualitative agreement with predictions derived for the sim-
plified model with constant electric field intensity —V¢ (Kondepudi 1980,
Kondepudi and Prigogine 1981).

At moderate and high values of B the steady patterns generated inside the
membrane are symmetric when no current passes through. When increasing
the current intensity the patterns are more and more distorted. At even
higher intensity of the current the temporal oscillations arise in the system.
The coexistence of the spatially steady pattern region with the region of
bulk oscillations generated by the current of magnitude I = +10 is shown in
Fig. 8. The width of the oscillating region increases with increasing current
value. Similar behaviour was observed in a 2-D BZ reaction system modelled
with the simplified model equations (Steinbock et al 1991). The current of
magnitude I = —10 applied to the same system generates quite different
behaviour, cf. Fig. 9. In this case trains of pulse waves evolve near the left
boundary moving, after the transients have died out, with constant velocity
to the right boundary, where they are annihilated. The width of the region
with travelling waves again depends on current value.

Response of the ionic Brusselator (scheme BI2, full model formulation)
to the periodic forcing with alternating electric current was simulated too
(cf. Fig.10). The well developed dissipative structure with the wavenumber
m = 7 exists in the system. This structure is only slightly disturbed by the
alternating current. The temporal oscillations at any point inside membrane
are damped, only at the boundaries the amplitude of the oscillations is more
pronounced. The oscillations inside the membrane are synchronized with the
period of the forcing current.

2.4 The Twodimensional System

We assumed high ionic strength of the medium, moderate reaction rates and
comparable mobilities of the charged particles. Thus our calculations are
based on scheme BIl and Eq. (1) adding a further term for the diffusion in
the second spatial coordinate in a plane. Diffusion coefficients are assumed
to be equal in both directions, the electrical field is constant throughout the
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whole system and its direction is parallel to 7. There is no component of
the electrical field parallel to the second spatial dimension 7. The values of
X and Y were fixed at their equilibrium values at r2(0) and r3(1) and to 0 at
r1(0) and r1(1) respectively. In Fig. 11a the pattern generated at the absence
of an external field is shown. Fig. 11b presents a stationary pattern obtained
at an external field strength of —V¢ = 20. It is seen that the wavenumber
is decreased by the action of the external field, the wavelength along ra has
increased and the shape of the spots has changed from a mixture of hexagons
and stripes into stripes. Similar changes have been observed in experiments
(Ouyang and Swinney 1991).

3 Discussion

The formation of stationary spatial patterns by the interaction of a nonlin-
ear chemical reaction mechanism with transport of reaction components in
a distributed system is believed to play a crucial role in biological morpho-
genesis. Stationary pattern formation in a distributed system is a well stud-
jed phenomenon in the classical Brusselator model (Kevrekidis and Brown
1989, Boissonade 1988, Dewel and Borckmans 1989, Borckmans et al 1992).
In order to study the influence of electrical field on such ?Turing-patterns”
we have chosen two different approaches of introducing electrical charge to
the model. In each case the rate equations describing the classical Brusse-
lator are extended by an expression for the transport of ionic compounds
according to the Nernst-Planck equation. The simple approach assumes a
spatially constant electrical field whereas the local electrical field intensity
in the more complex approach is derived from the Poisson equation and it
therefore can exhibit inhomogeneities in space. Such spatial variations of
the field may be generated by the different mobilities of the ions present in
the reaction mixture. The latter approach requires to include a nonreactive
counterion into the reaction scheme. Without an externally applied electri-
cal field the patterns obtained from the two models differ in their amplitudes
and wavelengths. The full model including spatial variations of the field
yields concentration profiles of smaller amplitudes and larger wavelengths
than the simplified model which neglects internally generated electrical field
inhomogeneities. Using fixed boundary values both models posess multiple
solutions which differ in their symmetry. Accordingly, the fluxes these pat-
terns exhibit at their boundaries differ. At small intensities of an externally
imposed electrical field the concentration patterns are distorted by the field
in both models considered. In the case of fixed boundary values with at
least one boundary fixed to equilibrium values of X and Y there is a region
of hysteresis if the external electrical field intensity is shifted up and down.
Here two different patterns coexist and it depends on the initial conditions
which pattern will form. This hysteresis is also reflected by the fluxes at
the system boundaries. The system therefore "remembers” its initial condi-
tions and the fluxes at the boundaries sensitively depend on them. At the
limits of the hysteresis region small changes in the external electrical field
strength may lead to large changes in the fluxes by switching from one pat-
tern to another. A nonlinear dependence of the fluxes at the boundaries on
the external electrical field is also observed under zero-derivative boundary
conditions. Furthermore, under these conditions the critical value B, of the
parameter B, where the pattern formation sets on, is decreased in both the
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full and the simplified model. While both models show qualitatively similar
behaviour at low values of the externally imposed electrical field intensity
they differ remarkably at higher values of the external field. In the simplified
model the distortion of the patterns continues and the fluxes at the bound-
aries vary in an almost cyclic fashion with increasing electrical field intensity.
In the complex model, however, the stationary patterns turn into travelling
waves or bulk oscillations as the external field exceeds a certain threshold
value. Correspondingly, the fluxes at the boundaries begin to oscillate. The
amplitude of these oscillations of the fluxes is large if X and Y are fixed to
their equilibrium values or if zero-derivative boundary conditions are used.
In the latter case a region of travelling waves exists spatially separated from
a region of almost stationary behaviour. Therefore the fluxes are almost
constant at one boundary and oscillatory at the other. If X and Y are fixed
to non-equilibrium values at both boundaries, large oscillations occur in the
interior of the system but the fluxes at the boundaries oscillate with only
small amplitudes.

Spatial and/or spatiotemporal charge distribution varies greatly on the
scale of the characteristic pattern size. We can speculate that such large
variations would affect both tertiary and quarternary structure of proteins
present in biological membranes. Enzymatic activity of such proteins could
then be strongly affected too. This would have implications, e.g. for a
prepattern formation and control in morphogenesis.
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Figure 1: a) Symmetric and asyminetric profiles obtained at system lengths
I — 1.375 and L = 1.400. b) Profile of the local electrical field intensity

corresponding to the symmetric pattern in

Fig.la. c) The charge density

profile corresponding to the symmetric pattern in Fig.la. The ionic Brusse-
lator scheme BI2, full model. Parameters: A = 2.0, B = 5.2, Dx =1.6-1073,

Dy =6.0-107%, Dg = 1.0
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Figure 2: Asymmetric concentration profiles of X. a) Current I =425,
b) current I = —2.5 The ionic Brusselator scheme BI2, full model. Parame-
ters: A=2.0, B=52,L=2, Dx =1.6-1073, Dy = 6.0-1073, D¢ = 1.0

Figure 3: Comparison of models BIl (light line) and BI2 (heavy line). When
the concentration of a nonreactive counterion K + is increased, the profile for
BI2 model grows in amplitude; beyond a threshold value of K concentration
it switches to a profile similar to the one obtained from BI1 scheme. Further
increase of K+ concentration increases the amplitude of the BI2 profile until
it becomes practically identical to the BIl profile. Parameters: A = 24,
B=52 L=10, Dx =1.6-1073, Dy =6.0-10=, Dg = 1.0
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Figure 7: Fluxes at the boundaries for the simplified model BIl with zero-
derivative boundary conditions as a function of the externally applied elec-
trical field intensity. The light line refers to the boundary z = 0, the heavy
line to the one at z = 2.0. Parameters: A = 2.0, B = 5.2, Dx = 1.6-1072,
Dy =6.0-1073, Do = 1.0
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Figure 8: Spatiotemporal evolution of coexisting steady pattern and bulk
oscillations inside the system starting from Xo = 2sin(4wz/L) + 1,Yo =
B/A. Current I = +10.0 The ionic Brusselator scheme BI2, full model.
Parameters: A = 2.0, B =52, L = 2, Dy = 1.6- 1073, Dy = 6.0 - 1073,
D¢ =1.0
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Figure 9: Spatiotemporal evolution of travelling pulse waves inside the system
starting from the profiles Xo = 2sin(4rz/L) + 1,Yo = B/A. Current I =
—10.0. The ionic Brusselator scheme BI2, full model. Parameters: A = 2.0,
B=52 L=2 Dx=16-10"3, Dy =6.0-102, D¢ = 1.0
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Figure 10: Spatiotemporal evolution of response to the alternating cur-
rent forcing starting from X, = 2sin(4nz/L) + 1,Yo = B/A. Current
I = Iysin(wt) The ionic Brusselator scheme BI2, full model. Parameters:
A=20,B=52L=2 Dx=16-10"° Dy =6.0- 1073, Dg = 1.0

Iy = 45.0, w =025
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Figure 11: Two-dimensional stationary concentration patterns of X. a)

without an external electrical field, b) with constant electrical field applied
along the coordinate r;. The system is the square of the size: 1.0 x 1.0.
The ionic Brusselator scheme BIl, simplified model. Parameters: A = 2.0,
B=52 Dx =16-10"%, Dy =6.0-107%, Dc = 1.0
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