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Abstract

In the study of adaptive behavior an important issue has become the possible
dichotomy between simulations and real world artifacts (robots). In our work we
try to find a synthesis between these two methods to study the interaction
between autonomous agents and the real world. The strategy we propose is one
that initially relies on simulation studies to develop and test the basic properties
of the control architecture. In a second step this control architecture is validated
against the real world using robots. When this phase is successfully completed
other experiments with the robot can be performed that generalize to new
domains. As an illustration of the first phase we present the implementation of
Distributed Adaptive Control (DAC) on a real robot. The miniature
experimental mobile robot Khepera and the development environment are
presented. As an illustration of the second phase the robot is equipped with a
simple visual system incorporating some obvious properties of the retina,
topology and band pass filtering. The behavior and properties of the control
architecture in this set up will be evaluated.

1. Introduction

A relatively new trend in artificial intelligence is to place the study of
intelligence in the perspective of autonomous agents interacting with the real world
(e.g., Brooks, 1991). In earlier work we have argued that merely building autonomous
agents, however, does not automatically solve the fundamental problems of Al (e.g.,
Pfeifer and Verschure, 1992) and that the central issue is one of the ontologies
involved (Verschure, 1992); the issue of "doing the right thing" should be addressed
in the perspective of the agent and not of the designer/observer. In traditional AI the
issue might have been how one should predefine a system in such a way as to perform
well on a certain task. In our case we focus on the question how a self-organising
process can lead to adaptive behavior (See also Edelman, 1989).

The complexity of the dynamics of system-environment interaction can be seen
as an obstacle to the development of this approach. To model the interaction between
an autonomous agent and its environment one either relies on simulations or on
hardware implementations. Often these two methods are taken to be in conflict. On
one hand simulations do not allow the detailed study of the physics of the world and
of the properties of the system (sensors and effectors). In many cases one can doubt
their plausibility. For instance, if one relies on the simulation of an agent moving
about in a discretized world. On the other hand systematic explorations of control
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architectures on real robots require a large time investment and systematicity is not
guaranteed. This method often lacks the flexibility one needs for such an exploration.
To overcome these problems we strive towards the integration of both methods.

In this paper we want to give an example of how simulation studies and
experiments with real robots are both necessary in the process of developing and
understanding control architectures. We distinguish two phases in the development of
a control architecture. In the first one the control architecture is evaluated using
simulation studies and validated against the properties of the real world using a robot.
In this phase the functionalities of both systems are similar. The simulation study
serves the purpose of understanding the dynamics of the control architecture. It can
not provide a final test on its real world plausibility. This can only be achieved by
using real world artifacts. In the second phase experiments with the real robot can be
made in new domains independent of simulation studies in order to explore how the
control architecture generalizes to other characteristics of the real world and other
sense-act systems.

We will illustrate this methodology using a control architecture developed
according to the design methodology of distributed adaptive control (DAC)
(Verschure et al., 1992). The robot experiments will be performed using the platform
developed by the first author, the miniature mobile robot Khepera. We will show that
the results of the simulations and the robot in the first phase converge. These results
are not only an indication of the robustness of the control architecture, but illustrate
the importance of an integrated methodology for the design and testing of
autonomous agents and their control architecture. Simulations are performed for the
exploration of the control architecture while hardware experiments provide a final
validation against the real world. The power of simulation studies in understanding
control architectures was, for instance, demonstrated in Almassy and Verschure
(1992) where the behavior of DAC over a large parameter space was explored using
genetic algorithms. In this case about 1000 individual configurations were examined
to show the robustness of the control architecture for a large set of parameter settings.
Hardware experiments, however, allow an evaluation of a control architecture that
include properties of the sense-act system and of the real world that are not that easy
to simulate. As an example of these virtues of hardware experiments we will discuss
the results of experiments with Khepera using a simple vision system.

2. The hardware platform: the mobile robot Khepera

2.1 Design concept

Khepera is a miniature mobile
robot, especially designed for
testing control algorithms. In its
design the flexibility of the :
platform was one of the central -
concerns. The goal was to develop
a system that on one hand does
not require a lot of space to
perform experiments and on the
other has sufficient computational
power with a low general energy
consumption.

The elementary configuration
has a cylindrical shape with a
diameter of 55 mm and a height of
30 mm (Figure 1). It consists of
two modules: the base plate and
the processor module. Since all

Figure 1: The miniature robot Khepera
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modules are interconnected by an extension bus the system can be expanded by other
modules, like the "vision" module described in section 2.4, added in piggy-back. The
small size does not allow the robot to carry a lot of equipment around, but it permits
the user to perform experiments on a relatively small space (in our case a field of .25
m2).

2.2 Base plate

The base plate is situated at the
bottom of the robot. It constitutes the
elementary interface with the real  Vision module
world: robot motion and obstacle or =
light detection. Processor module = T

The robot uses two wheels for ,'g[i y
locomotion. Every wheel is driven by a Rl
DC motor. An incremental encoder is
used to detect the revolutions of the
motor. In the middle of this module
four chargeable batteries are located.
The robot can operate autonomously
on these batteries for about 20 minutes.

Obstacles and light are detected
by 8 infra red send-receive sensors.
These sensors allow the detection of
emitted infra red light or of ambient
light. At the front of this module six
sensors are placed and two are placed

Base plate

at the back. The combined receptive Figure 2: The robot extended with the “vision“

fields of the six front IR sensors spans module. 1: location of IR sensors. 2: camera.
over -90° and 90° from the centre of
the robot. The angular resolution of
each sensor is relatively big, about 50°.

2.3 The processor module

The processor around which this module is developed is a Motorola 63331
microcontroller with a performance similar to the Motorola 68020 processor. It has a
clock frequency of 16 MHz. Next to the processor this module contains 256 kByte of
RAM, 256 kByte of ROM, six A/D channels with a resolution of 10 bits, and a serial
port with a maximal transmission speed of 38400 Baud. The cable supporting the
serial link can also be used for power supply.

This module is plugged on top of the base plate using an array of connectors
that make the electrical and mechanical connections.

Connecting this module with the base plate constitutes the basis of the robot and
allows simple navigation and obstacle detection.

2.4 An extension: the one-dimensional vision module

The one-dimensional vision module has been designed to allow experiments
with more sophisticated sensors. It consists of two one-dimensional cameras
(indicated with 2 in Figure 2). Every camera delivers a linear image of 64x1 pixels
with a resolution of 10 bit per pixel. To be independent of the intensity of ambient
light, a special sensor adjusts the sensitivity of the cameras.

This module, like any other imaginable module, is added to the basis of the robot
by the extension connectors. The extended robot and the positions of the sensors are
displayed in Figure 2.
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2.5 The development environment

The development environment is running on a workstation that communicates
with the robot through a wired serial link. This allows the development of the
software on the workstation in a standard C environment. The compilated code is
down loaded on the robot through the serial link and executed. After that the serial
link is available for communication with the control process running on the robot.
This communication is facilitated by the size of the robot: the table on which the
workstation is placed is usually large enough to perform experiments with the robot.

3. Distributed Adaptive Control

The control architecture we evaluate is developed according to the design
methodology of distributed adaptive control (Verschure et al., 1992, in this paper also
a comparison with other approaches is made) which is derived from a distributed self-
organising model of the behavioral phenomenon of classical conditioning (Verschure
and Coolen, 1991). We will base our example on an agent that can learn to avoid
obstacles and approach targets (light sources).

The basic setup of the agent is given by its value scheme (Edelman, 1989) which
can be seen as genetically predefined. The value scheme defines the properties of the
sensors and effectors, the morphology of the system, the structure of the control
architecture, and the mechanisms for changing the properties of this structure.
Moreover, it defines some basic reflexes, like if the system collides to the right it will
reverse and turn to the left. These reflexes consist of prewired relationships between
primitive sensors of the system and its actions. They provide the system with a coarse
adaptation to the environment. The way in which they are activated by the system-
environment interaction will initially completely determine the actions the agent will
execute. To enable the system to adapt to the exact properties of its interaction with
the environment it is equipped with a distal sensor which responds to properties of the
environment extended beyond the morphology of the system. The integration of this
sensor in the actions of the system
will lead to a fine tuned adaptation to
the system-environment interaction.
This integration process can be seen
as the development of a specific
categorisation of this interaction (see
Verschure and Pfeifer, in press, for a
further analysis of these categories).
It is important to note that the control
architecture defined by the value
scheme must be seen as a structure
with specific spatial properties.

Sensors: The agent has two types
of sensors: The distal sensors and the
proximity ones. In the first
experiment this first category of
sensors is based on the IR signals and
in the second experiment on the
signal stemming from the two Figure 3: The sensors, morphology, and the control
cameras. The proximate sensors, architecture of the agent: 1, receptive field of the
collision sensors and target sensors, distal sensor. 2, area covered by collision sensors
are respectively defined by the and target sensors. CS receives input from the qxgtal
saturation of the IR sensors and the sensor. USC receives input from the collision

. . . sensors. UST receives input from the target sensors.
g:;zg?:n of ambient light by the IR M is the group of command units. I is the inhibitory

unit. + indicates an excitatory connection,
- represents an inhibitory connection.

Environment
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Actions: The agent can perform 4 actions: "turn left", "turn right", "reverse", and
"advance". The avoidance actions consist of a "reverse" action followed by a turn.
The approach actions consist of only a turn. The default action of the system is to
advance. The motor activity in turn actions is fixed, in the hardware experiments
current is applied for 5 milliseconds.

Control: The control architecture consists of four groups of units and one
inhibitory unit. The 6 units of the first group (CS - Conditioned Stimulus) receive
their input from one of the IR sensors. The continuous activation, sj, of each unit i is
determined by the normalised value of the intensity of the infra red light reflected by
the obstacles and detected by IR sensor rj. In this way these units code a measure for
'time to contact' (Lee, 1976).

The units of the second group (USC - Unconditioned Stimulus Collisions), which
also consists of 6 units, receives its input from the collision sensors. As in the case of
CS there is a one to one mapping between units of USC and collision sensors. If one
collision sensor is triggered, which happens when an IR sensor saturates, the
corresponding unit of USC will receive an input of 1. The third group (UST -
Unconditioned Stimulus Targets), also consisting of six units, relates to the intensities
of the ambient light detected by the IR sensors. Next to the input from a specific
primitive sensor the units of both these groups also receive input from CS. This input
is modulated by the weights of the projections from CS to USC and UST. The input

or local field, hil, to the units of USC and UST is defined as:

N
@ hr=ct+ Y KEs
=1

Here A indexes the groups USC and UST, ci* denotes the input from the related

proximity sensor, ci7L {0, 1}, s; the activation of the units in CS, 5§ [0, 1], and Kij7L the
weight of the projections of CS to UST and USC. These weights are updated
according to:
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Where N defines the number of units in CS, 7 the learning rate, € the decay rate,

and ¥ the average activation in group A.5* introduces an active decay: decay will
only take place when other connections increase in strength.

Next there is a special unit I that regulates the relation between USC and UST.
This unit will inhibit the output of UST. It will not inhibit the activity of this group.
Activation in USC will increase the activation, a, of L

©) a(t+1)=aa(t)+s[§§si(tﬂ

o. denotes the decay rate, B the excitation rate, NC the number of elements of
USC, and s; the activity of element i of USC. The output function of the inhibitory
element is binary, i.e., inhibition of UST only takes place if the activation value of the

inhibitory unit exceeds a threshold (in all experiments o and B were set to 0.9 and
0.99 respectively).

The actions are coded by a set of command units in group M which consists of 5
elements.

The relations between the UST, USC and M are prewired. A collision to the left
will automatically trigger a "reverse-and-turn-right” action (and symmetrically for
collisions to the right). If a target is detected to the left of the system a "turn-left"
action will be executed. If a target is detected to the right the system will turn to the
right. One unit in USC or UST can trigger a unit in M. The groups USC and UST can
be defined in two clusters of units each dependent on the unit in M to which they
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project: e.g. all units of USC that are connected to collision sensors located to the left
of the center of the agent project to the "reverse-turn-right" command unit.

Since the activation of all units in the system can only have positive values
learning is expressed in the development of excitatory connections between CS and
USC and UST. Also the connections between USC and UST and M are excitatory.
The inhibitory unit I, however, implements a specialized inhibitory circuit.

4. Phase I: The transfer from simulations to hardware

The results we report on the transfer
from the simulation study to the real world / \
artifact focus on avoidance behavior. The
full architecture reported in the last section @Robot e
was, however, implemented on the robot.
The configuration of the obstacles
used in this first experiment is showed in
Figure 4. This environment (of 50 x 50
cm) has been build with little pieces of
wood on the table near to the computer
collecting and showing the results of the
experiment. The robot was connected with
the computer with a cable for gigure4: Configuration of the obstacles in the
communication and power supply. first experiment
The program that was downloaded on
the robot was the same C source code as used in the simulations with some
modification for the interfacing with the sensors and the motors. Also the same

parameters were used as in the simulation (all thresholds were set t0 0.5, 1 =0.1,e =
0.9, see Verschure & Pfeifer, in press, for a complete description). The world
simulation is replaced by some low-level routines that collect the sensor data
(distance measurement) and drive the motors (velocity regulation). The time
segmentation is the same as in the simulation: A sequence of steps is performed. At
every step the robot reads the sensor values, updates the activations of the network,
executes an action, and adapts the weights of the network. Only the default action,
going forward, is continuously performed until it is interrupted by an event on the
Sensors.

As a quantification of the behavior Figure 5 depicts the accumulated amount of
collisions over time for three different experiments which each lasted about 10
minutes.
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Steps

Figure 5: Total amount of collisions of the robot after a given number of steps
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These learning curves show an equivalent development as reported in earlier
work on this model (e.g., Verschure et al., 1992). To show the parallel between the
properties of the robot and the simulated agent the same experiment was performed
using the simulator. In this case CS is organised following a one-to-one mapping with
37 elements of a range finder spanning the same receptive field. Onto USC the states
of 37 collision sensors are projected (See Verschure et al., 1992, for a complete
description).

Figure 6 shows the trajectory followed by the agent in 1000 steps.

Figure 6: Example of a simulated trajectory

Qualitatively the robot and the simulated agent showed similar behavior. The
robot, however, displayed a higher variability in the specifics of the actions that make
up the trajectory; e.g., while the simulated agent will always exactly turn over the o
specified turn angle (9°) the robot is not and cannot be that precise.

Figure 7 shows the learning curve of the simulated agent.

40
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0 200 400 600 800 1000 1200
Steps
Figure 7: Total amount of collisions of the simulated agent after a given number of steps




When we compare the learning curves of the robot (Figure 5) with those of the
simulated agent the overall shape shows a strong similarity. The robot, contrary to the
simulated agent, never reaches a state where no collisions are encountered. This can
be explained out of the earlier mentioned higher variability in its behavior. Where the
simulated agent displays 'ideal' behavior and also settles into a rather stable trajectory,
the robot is confronted with the noisiness of the interaction with the real world. These
results indicate that the transfer from simulations to hardware experiments in this task
environment was successfully performed.

5. Phase 2: Experiments with a simple visual system
5.1 Layout of the visual system

One of the characteristics of the DAC control
architecture is its independence of the exact
properties of the sensors. To explore this property
we have performed experiments where the distal,
IR, sensors were replaced by another device: a one-
dimensional visual system. The hardware module
added to the robot to allow this experiment has
been described in the section 2.4.

The visual system is designed to detect and
differentiate several different spatial frequencies
present on the horizontal vision line of the two
eyes. The system consists of several layers of units.
We consider the array of pixel values as the input
layer of the system. Every input is connected to the
units of a frequency specific layer by connections Figure 8: Connection between the input
having a particular "Mexican hat" form that layer and the filtered layer.
expresses the properties of a specific on-center-off-
surround structure (Figure 8). These connections perform a band pass filter around a
base frequency. The value of this base frequency is given by the width of the
"Mexican hat” functon.

Four of these frequency specific layers are connected in parallel to the input
layer. Every layer is excited by a different range of frequencies. The average of the
absolute activity of the layer is proportional to the presence of these specific spatial
frequencies on the one-
dimensional image. One
output unit per layer
collects this average
value. The four output _ﬁ_
units characterise the
spectrum of the image, *’[b"_,dl.,_
representing the presence
in the image of four
categories of frequencies,
from high (hf) to low
frequency (If). An
example of the activity of
the four output units is
given in Figure 9.

Within one visual
subsystem, camera and
neural net processing, the -
spatial information of the g B
input is lost: its < BRE=
organization on the array  gjgyre 9: Global structure of the vision system with an example of the
of light sensitive cells. activation of the output units.
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The visual system is only sensitive to certain ranges of frequencies. For instance,
shifts of the stimulus on this array cannot be detected. By combining two cameras,
however, the input to the system is also categorized in terms of its spatial
organization: whether it is the left or the right camera. The network architecture is
repeated for every camera. In this way the output of the visual system is coded by
eight units.

5.2 Results

The eight output units of the visual system are used as CS in the control
architecture. The environment (Figure 10) consists of white walls with regular black
vertical lines. This gives the walls a particular horizontal spatial frequency.

Figure 10: The visual system: The environment and a typical path.

The general results are similar to those obtained in the previous tests made with
the IR sensors and in the simulations: the system successfully integrates its visual
system into its actions (Figure 10 depicts the trajectory followed by the robot). To
further understand the learning process we will focus on the characteristics of the
weight matrix, K, that implements this integration process.

Contrary to Verschure and Pfeifer (in press), where the learning performance was
analysed by wranslating the weights back into world coordinates, we will in this case
focus on the values of the weights. The interconnectivity between CS and USC is
represented in Figure 11. The collision sensors placed at the left-frontal part of the
robot are labelled according to their position relative to the direction of displacement:
5°,45°, and 85°.

Figure 11: Interconnection matrix between the CS field (vision system
output neurones) and the left half part of the USC field.
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The middle high frequency (mhf) of the left camera is associated most strongly
with USC. In this case with the unit connecting to the collision sensor located at 45°.
Given the properties of the robot and the environment this can be explained. Figure
10 already showed that the robot mainly encounters collisions at 45° or more. The
angle under which the left camera now detects the stimuli is modulated towards the
higher frequencies. The angle under which the right camera detects the stimuli related
to the general type of collisions implies a modulation towards the lower frequencies.

6. Discussion

The aim of this paper was to demonstrate the importance of a combined approach
in modeling system-environment interaction. Simulations as a means to explore the
behavior of control architectures for autonomous agents. Hardware experiments to
provide a validation of the model against the real world. The results show a strong
convergence between these two methods in the case of distributed adaptive control.
Moreover, the independence of the control structure from the exact properties of the
sensors was demonstrated. In a next step we will focus on multi-sensor fusion.
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