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Abstract

We discuss the excitable media metaphor in the context of the social be-
haviour of ants. Each individual ant has a neural network that generates chaotic
signals for spontaneous locomotor activity. Ants are able to move and interact
among them, this process of movement-interaction generates periodic pulses of
activity in the colony context. Activity spreads among the ants as if they were
particles of an excitable fluid. This phenomenon is antichaotic in the sense that
the system self-organize to give spatio-temporal order out from the chaotic social
units.

1 Introduction

Mobility is a characteristic of all adult insects. It allows them to move in order to
perform a range of vital activities such as feeding, dispersal, mating, defense, etc. and
it has been suggested that the success of insects as terrestrial animals may be in part
due to their high degree of mobility (Chapman, 1991). In the case of ants, as in all
other groups of social insects, mobility of individuals is fundamental for the adequate
coordination and maintenance of their social organization: mobility ensures widespread
information diffusion, correct task allocation and an efficient dynamics of interactions
among the individuals.

It is now well established that the temporal patterns of movement and activity in
ants reveal some degree of discontinuity suggesting that individuals spend an important
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portion of their time in a state of quiescence (eg. Sudd, 1967; Herbers, 1983). Recently,
it has been reported that temporal patterns of movement inside the nest of Leptothoraz
ants show periodic cycles of activity alternated with periods of inactivity (Franks et
al, 1987; Franks et al, 1990; Cole, 1991a). The initiation of a cycle of movement is
due to the spontaneous activation of a few -or just a single- individuals and subsequent
activation of the motionless by interaction with the active ones. Detailed studies of
single isolated workers show that the pattern of individual spontaneous activation is
chaotic and that chaotic behaviour tends to vanish when the ants are allowed to interact
in the colony context (Cole, 1991b). This means a transition from a chaotic disordered
temporal regime into a periodic ordered one, in other words, antichaos generated by a
process of interactions among the social units.

Antichaos is a nobel concept in the sciences of complexity that refers to those
initially disordered systems that “spontaneously crystalize into a high degree of order”
(Kauffman, 1991). Antichaos is though to be present in many of the process where
pattern formation exist and biological examples must be many, if not the general
rule, from the autocatalitic biomolecular level to the global dynamics of interacting
populations. In the present study we review the case of an antichaotic phenomena
in an example of insect societies trough the development of an artificial self-organized
society of interacting automata. We would like to suggest that some aspects of what we
call social behaviour may be inevitable properties of interacting synergetic collectives
of individuals and thus are roboust and independent of their material substrata or
particular designs.

The specific phenomenon we are interested in has been modeled in the past using
a variety of formalisms (Goss et al, 1988; Hemerick et al, 1990; Tofts et al, 1992; Cole
1992; Miramontes et al, 1993; Solé et al, 1993a,b). We will use the formalism of mobile
cellular automata as in Miramontes et al (1993) and Solé et al (1993a,b) but with
the innovation that spontaneous activations at the individual level are produced by a
chaotic neural network. Before introducing the model, we would discuss some relevant
aspects of the biology of the Leptothoraz ants.

2 The basic biology of Leptothoraz ants

350 worldwide-distributed named taxa compose the Hymenoptera genus Leptothoraz.
They are quite small in size and their natural colonies rarely exceeds a few hundred
individuals, the typical size being of around one hundred. The colonies of these ants
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are very compact and the individuals live in close proximity to each other. Leptothoraz
commonly nest in small preformed cavities like hollow seeds, cracks on rocks or under
stones. Colonies may have one or multiple queens but queenless colonies are also
common in nature suggesting that the queen has no other role but reproduction and
that the colony is not centrally ruled by a single individual (Miramontes, 1992).

The ants in this genus are monomorphic and no castes exist on their societies
except by some degree of labor specialization that develops with age, nevertheless
the individuals are quite homogeneous and can easily switch and engage in tasks not
belonging normally to their specific age groups. Being compact and living in close
proximity suggests that communications are mostly short-ranged and in fact the most
used form is direct contact through antennation (Herbers, 1983).

Cole (1991b) has established that the process of spontaneous activations in Lep-
tothoraz ants involves low dimensional chaos and has suggested that this may have
considerable consequences for the study of social behaviour since movement is corre-
lated with the ants activity as social beings. Hence the study of locomotion and the
central nervous system in ants must be of relevance as well.

2.1 Locomotion and the central nervous system in ants

Locomotor activity in all animals is under direct control of the central nervous system
(CNS). Motion results after muscles receive signals from the motorneurons that innerve
them. Motorneurons in turn, are coupled via axons to neurons situated in the nervous
ganglia. the nervous cord or the brain, depending of the anatomic and physiological
details of the animal in question.

Physiological rhythms, that are translated into motor activity through activation of
specific motor programs, can be generated by single cells or by networks of coupled cells
that are part of the central nervous system and are named central pattern generators
(CPG). CPGs are involved in many important processes involving muscular activity
like cardiac pulses. breathing, intestinal contractions, swimming, escape movements,
ﬂjght etc.

One of the most well known CPGs in invertebrates is the R15 neuron of the Aplysia
mollusc. The R15 is a single cell with the ability of endogenously thythmic activity but
subject to modulation by synaptic input and hormonal influence. Another single cell
CPG ewst in the mollusc Tritonia. In this case, three different cells are know for they
property of endogenous rhythmic firing patterns. In Tritonia, these CPGs are know to
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be involved in locomotor control of swimming patterns.

A number of CPGs are formed by only a few interconnected neurons via electrical
synapses. The simplest of these cell aggregates are these formed by only two single
neurons. An example is know to exist in the snail Lymnaea stagnali where the neural
oscillator (known as VD1/RPD2) is a pair of electrically coupled peptidergic cells that
fire in close synchrony. The VD1/RPD2 system is connected externally by means of
excitatory and inhibitory inputs but their thythms are endogenous to the coupled pair.

Many neural circuits are know to generate electrical activity without any external
input from the sensory organs and rhythmic patterns can arise from the network ar-
chitecture only (Glass et al, 1988 and ref. therein) and this seems to be the case in
ants that can spontaneously show motor activity without any external stimulus.

The nervous system in ants is organized as a network of interconnected ganglia that
are located in specific regions along the body and with direct connection with the brain.
The brain is located inside the head and it is the largest conglomeration of neural tissue
with direct connections with the eyes and the sense organs in the antennae, being for
this reason involved in complex information processing and control tasks.

Apart from the basic anatomy, the CNS in ants is very poorly understood. This is
due to the obvious difficulty posed by the size of an ant and by the fact that any exper-
iment involving surgical manipulation that intends to observe the resulting behaviour
will be impossibilited by the fact that any “misbehaved” or impaired ant is quickly dis-
posed by its colony fellows. Another reason has to do with the generalized belief that
ants are capable of only quite simple individual behaviour due to the simplicity of their
nervous system (typically formed by about 100,000 neurons). It is widely accepted,
yet not rigorously probed, that ants seems tyo have very limited neural plasticity and
that, probably, most of its behaviour is stereotyped and fixed pre-programmed.

That the ant’s nervous system section that deals with locomotion may be partially
organized in a neural metwork is not a remote hypothesis. At least evidence exist
that some nervous regions have the typical parallel-distributed-system feature of being
robust or fault-tolerant. It is kmown that ants have a number of special innervate
regions that are involved in orientation and locomotion and experimental damage to
them cause disorientation only after a number of them being impaired. Disabling of
only a few does not cause any noticeable lost of orientation (Dumpert, 1981).

As we already said, the patterns of spontaneous activations in some of the species
of Leptothoraz ants exhibit low dimensional chaos (it is unknown at the present time
whether this phenomenon is universal for the genus). We would like to model this
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individual behaviour by means of a simple neural network. This will be accomplished
by choosing a simple neural circuit that can generate low dimensional chaos.

3 Collective behaviour in artificial societies

An ant colony is a highly integrated structure and this colony-level order comes out
as the result of coordinated massive individual interactions that are facilitated by
the existence of effective communication links among them. In some degree, social
behaviour must be regarded as the inevitable outcome of interconnected structures and
must be regarded as a roboust generic property of natural and artificial self-organized
complex systems. Social behaviour can not be reduced to the individual behaviour in
the sense that isolated individuals can not generate alone the variety and richness of the
global collective behaviour present in their society. Social behaviour is thus holistic or
synergetic and is only produced by the existence of more than one interacting organism.
Social behaviour only exist if the interacting individuals can communicate and modify
their individual behaviour as a consequence of such acts.

We will use here the term “artificial society” in the narrow sense of a collection of
individuals (the mobile cellular automata) that can interact and modify their individual
behaviour because of the interactions. The coupled collective will be able to exhibit
global dynamics and in the case reviewed here will be able to mimic the antichaotic
phenomena of disorder-order transition observed in real ants.

3.1 A neural network model for individual chaotic activation

Neural networks of only a few elements may exhibit very complex dynamical behaviour
and models of four, two and even one single element able to generate chaos have been
studied elsewhere (Das II et al, 1991; Wang, 1991; Chay, 1985; Aihara et al, 1990;
Kurten et al, 1986; among others). For simplicity, we will use a two-neurons full
interconnected NN without external inputs. One neuron is excitatory and the other
inhibitory. The network is a discrete time two-dimensional coupled map with a sigmoid
function. Wang (1991) has studied exactly in a very elegant way an equivalent network
and has shown that this quite simple cellular arrangement of two interacting elements
exhibits period-doubling route to chaos.

Consider the network formed by neuron z and neuron y as is shown in figure 1.
The time evolution of the system is given by the following parametric map:




z(t+1) = F, (wum(t) + wlgy(t))
y(t + 1) = Fu(wna(t) + way(t)) (1)

where

F,(=) = tanh(uz) (2)

it is the neuron gain, and the w coefficients are the entries of the interaction matrix
W that codifies the strength of the neuron’s connections. Following Wang (1991), the

network shows chaos for a suitable value of  and when the entries of W are of the

w= (T3 %)

Each neuron in the network exhibits chaotic motion in its temporal evolution and

form:

the bifurcation diagram can be easily constructed taking y as the bifurcation parameter.
Here we will use the absolute value of the difference of the two neurons’ states as the
signal for locomotion activation and the resulting bifurcation diagram appears in figure
2. A signal for spontaneous chaotic activation will be passed to an hypothetic motor
program only if this absolute difference exceeds a given threshold value ¢ (that is, the
signal is produced depending on the degree of the network synchrony):

|=(t) — y(t)| > e (3)
The use of this convention allows fine control of the firing rate probability in the
network.

3.2 Interactions and global dynamics

The colony-level dynamics is implemented here by means of an interacting set of mobile
cellular automata that have a range of features that capture closely the basic biology
of the ants: (1) a set of identical elements reflecting the fact that Leptothoraz ants
are monomorphic and casteless; (2) there are not “privileged” individuals dictating the
dynamics to follow (no queens ruling centrally); (3) first neighboor interactions that
capture the known fact that interaction among the ants are based on direct antenna-
tions (information is transmited locally but globally distributed in space by interactions
as in an excitable medium); (4) the automata can change their activity-movement sta-

tus because of the interactions; (5) isolated individuals can activate spontaneously and
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the activation process is chaotic (the signal trigering activation is generated by the
individual’s own neural network).

3.3 Mobile cellular automata

Mobile cellular automata are space-extended discrete dynamical systems with mobile
elements (Miramontes et al, 1993). In the particular case discussed here, the automata
are two-dimensional and interactions are restricted to the first neighboors in the nine-
cells square around each automaton. The movement pattern of the automata (objects)
are random walks with two constraints: two objects cannot be at the same place at the
same time and new positions are selected only among the first-neighborhood square.
The objects perform a maximum of six searching attempts until a free cell is found. In
case of not available space being found, the objects remain still.

The activity state S; of each object a; is given by a function that couples the object’s
own activity with that of the others objects in the first neighborhood:

Si(t+1) = tanh{g(( f J:5S%) + J;;Sf)} (4)

where J;; are coupling coefficients taken from the colony interaction matrix C and
k is the number of neighbors of a;. Note that term JiiS! represents the contribution of
the self-interaction. C is the square interaction matrix defined as follows:

C= (01 Cz)
Gz C4

1 represents active-active interactions, c3 and ¢, represent active-inactive and
inactive-active interactions, while ¢4 represents inactive-inactive interactions. The ac-
tivity value of the ¢ and j elements are considered together. For instance, if S; > 0 and
S5; > 0 then the interaction is of the active-active type and Ji; = ¢;.

The parameter g (gain) controls the slope of the hyperbolic tangent function and
determine the rate of activation and deactivation of the mobile objects. If the activity
of a given object is greater than zero then it is regarded as active and able to move,
otherwise it will be innactive and motionless.

Because the mathematical equivalence between equations (2) governing the dynam-
ics of the individuals and (4) that governs the dynamics at the colony level, it seems
appropriate to consider the system above defined as an excitable media at two hierar-
chical levels. Also it seems appropriate to consider our mobile cellular automata as a




sort of mobile neural network where processing units are not embedded in any fixed
spatiotemporal architecture.

An isolated innactive object will remain so until activated by one of the two fol-
lowing process: (1) it is spontaneously activated by a signal coming from its neural
network and when this happens S; is assigned with a fixed positive initial value (in all
our simulations this value was arbitrarelly taken as 0.1); (2) activated after contacted
by an already active object.

Consider a given lattice with a single isolated object on it. This automaton will
activate spontaneously and will keep moving for an interval of time, as long as the 5;
keeps greater than zero (S; as defined in (4) is monotonically decreasing to zero for
an adequate choice of g, see Miramontes et al, 1993). We can plot the time series of
the activations we got with this system (see figure 4(a)). The time intervals between
sucessive peaks is chaotic and it is possible to apply a linear transform to this serie in
order to show, in another way, that single isolated automata are chaotic. The transform
is quite simple and consist in the following: we take the time difference Atf; between
two sucessive activation peaks over a given time interval. The maximum of these At;
intervals is found (Atf;er) and the At; are normalized to Atyg,. a new time serie is
reconstructed with this normalized data as succesive points. One of this series (200
chaotic activations out of an original 10,000 time steps long serie) is shown in figure
3 together with the chaotic atractor in two and three dimensions. We compare the
qualitative aspect of the serie with the data for real ants as in Cole (1991b) and we
found a good agreement.

After performing the experiment of adding more and more objects to the lattice, we
observe the same transition phenomena reported by Cole (1991a, b) in ant colonies and
the same dynamic behaviour reported for random-activated objects (Miramontes et al,
1993). In the present study, we found that the transition is exhibited by chaoticaly-
activated objects as is shown in the graphs that appear in figure 4. A transition
from chaos into periodic cycles of activity is reachead at densities of around 0.2. In
order to show this in a more explicit way, we calculate the Fourier transform and
produced the graphs shown in figure 5 where the existence of clear peaks in the power
spectrum amplitude signals the presence of periodic motion as a function of lattice
density (objects/lattice cells).

We confirm the hypothesis that coupling of elements reduce the randomness of
the activations: as density is increased the number of chaotic activations per object

decreases (figure 6) meaning that the proportion of activations produced by interaction
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with another objects has increased. This process is non-linear suggesting that in this
simple model emergence of coherent collective behaviour is synergetic: the activity
budget of two interacting automata is greater than the sum of the time budgets of two
isolated objects (Miramontes, 1992).

4 Discussion

A number of models have been presented to attempt the simulation of periodic oscil-
lations in Leptothoraz (Goss, et.al., 1988; Hemerick et.al., 1989; Tofts, et.al.,1992; Solé
et.al., 1992)). All of them differ markedly in the assumption of the origin of the cycles
and in their degree of biological realism and predictive ability (see Tofts, et.al. (1992)
for a review of most of them). The model presented here match quite well the observed
phenomena in real ants and cellular automata capture quite well the essence of the
biology involved: (1) Single individuals are chaotic in their spontaneous activations.
(2) Activations occur by interactions among the objects and this process is clearly syn-
ergetic. (3) There is a transition from chaos into periodic cycles in the global dynamics
of the colony as more individuals are allowed to interact. (4) Chaotic activations per
object tend to decrease as a function of density. (5) Period length follow an exponential
decay for low densities but increases slightly for higher densities (Miramontes, 1992).
(6) Spatial distribution of activity seems to follow concentric symetries over the nest
space (Miramontes et al, 1993).

Aggrement with real data confirm the power of the formalism here used and the
correctness of interpreting the ants as excitable interacting units that compose an
excitable fluid with emergent collective dynamics: the social behaviour.
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6 Figure captions

[Figure 1] Connection diagram of the neural network model used for gener-
ation of chaotic signals. The NN is a two-neurons discrete-time coupled

map.

[Figure 2] Bifurcation diagram of |z(t) —y(t)| and g as a bifurcation param-
eter. The system shows constant, periodic and chaotic motion. System
parameters are: z(0) = 0.9, y(0) = 0.6, wy; = -3, wi2 = 3, wa = -6,

Wag = 6.

[Figure 3] (a) Reconstructed chaotic time serie for a single isolated object.
Lattice size 10x10, g = 0.05, C matrix entries all one. p =3, € = 0.3, the
rest of the NN parameters as in figure 2. (b) First return map of the serie
shown in (a). (c) 3D reconstruction of the same serie, x-axis: data(t);
y-axis: data(t+1); z-axis: data(t+3). Note the qualitative similarity of
the data and atractors with those in Cole (1991b) for real ants.

[Figure 4] Global dynamics of the MCA as a function of density. The graphs
show the number of active objects for different densities. The patterns
are chaotic but transform into periodic cycles when density is greater
than around 0.2. Density values are: (a) 0.01, (b) 0.1, (c) 0.2, (d) 0.4,
(e) 0.6, (f) 0.8, (g) 1.0. System parameters as in figure 3.

[Figure 5] Power spectrum (Fourier transform) of four series generated for
different density values: (a) 0.1, (b) 0.4, (c) 0.6, (d) 1.0. Note the
development of peaks that reveal the periodic nature of the data when
density is high. System parameters as in figure 3.

[Figure 6] Number of chaotic activations per object as a function of the
density. The activations decrease in a non-linear way showing the de-
crease of the system randomness. The original time serie was 100,000
steps long. System parameters as in figure 3.
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