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Abstract

A method of acquiring the skill of walking for a legged robot by on-line learning is proposed
that mimics both the individual learning and the evolutionary learning of living creatures, which
we should like to refer to as an A-Life approach. We propose a distributed controller associated
with each leg that learns whether to trigger the stride of its leg or not according to the observed
states. One difficulty in taking such a state-oriented approach to the learning mechanism is that
we have to reduce the explosively huge state spaces. We demonstrate how Genetic Algorithms
are incorporated with the acquisition of state compression functions.

Introduction

Planning a gait sequence for a legged robot so that it can walk stably in a variety of
terrain is a hard problem, especially when it is applied to a real world environment.
When precise models of both the dynamics of the robot and its environment are
available, we can obtain analytical solutions to give stable gait sequences. Much study
has already been done on robots with 4 or 6 legs under such conditions (Todd 1985)
However, adaptive gait planning has only been studied for cases where a robot walks
in modeled terrain, and where it causes malfunction of its own legs (Adachi, et. al.
1988, Hirose and Knieda 1991, Kumar and Waldron 1989).

In recent years, a turning point has been reached in walking robot research, which
we would like to refer to as the A-life approach (e.g. Maes and Brooks 1991, Snaith
and Holland 1991). This tries to find a gait through learning methods inspired by
nature. What we expect from this is a gait generation method without any
environmental or internal models, and that is robust to any kind of dynamic change in
the environment; one like those found in animals that develop their gait control
mechanism through evolution and individual learning, without knowing any models of
themselves.

How do animals achieve this ability to walk? Whether it holds true in real animals or
not we don't know, but we think that this process of acquiring the ability to walk may
be realized by the following two processes of self-organization and the evolution of
legs and their controllers:

e (Individual learning) First, each of the legs is associated with its own controller.
The controller learns plans for successfully moving its leg to achieve walking; it
corresponds an action to an observed state that is received through sensors, and
rewards the sequences of these action-state pairs when they succeed in walking
through reinforcement learning.

e (Evolutionary learning) These observed states are high dimensional spaces where
trial and error learning, actually, a reinforcement type learning, may not easily achieve
convergence without state compression technology. Here, we suppose that animals
have acquired their sensory integration functions through 'evolution.’ This is based on
the assumption that there are 'principal pairs' of sensory input. A principal pair is the
subset of a sensory input. When a principal pair is detected in an observed state, the
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pair works as a "wild-card"; any sensory information that does not belong to a
principal pair is simply neglected and categorized to a single state. For any set of states
that belongs to a principal pair, only one action is appropriate. For example, if we are
faced with the situation of avoiding a stone flying toward us, the principal pair is the
set of sensor inputs that distinguishes flying stones from others. The action to be taken
(bend the body, in this case) should not be affected by other sensory input such as
sound. This would be realized by a table-lookup type of state compression function,
thus, avoiding a state explosion. Animals are assumed to have acquired these principal
pairs through the process of evolution, and are therefore able to avoid the redundant
classification of state spaces.

In this paper, we artificially implement this individual and evolutional learning to
control a walking robot that adaptively walks through unpredictable terrain, that
acquires robustness to malfunctions of the legs, and that may be of a variety of
physical configurations. This method is realized by stochastic learning automata (SLA)
theories (Narendra and Thathachar 1989) and Genetic Algorithms (e.g. Goldberg
1989), and its effect is empirically demonstrated through simulated robots. We have
developed experimental hardware to test the effectiveness of this method in a real-
world environment (Fig.1). Although the hardware has not yet been completed at this
point in time, the results of the computer simulations shown in this paper assure that
the method can be expected to perform with high adaptability to unknown physical
configurations and environments in the real world.

Related Works

The idea of applying Genetic Algorithms to gait acquisition has also been proposed
by Snaith (Snaith and Holland 1991), and de Garis (de Garis 1990). Snaith's approach,
as well as de Garis's ideas, are based on the development of appropriate neural network
controllers for gait control which eventually generate reflective leg performances to
give a stable walk. The controller itself is almost the same as our SLA based learning
controller, except that the SLA approach is based purely on the association of a state
to the probability of a selection among actions. This means that the SLA approach is
more extendible thus incorporating a variety of sensory input enabling it to realize the
smooth adaptation to a dynamically changing environment. One of the drawback is, as
Snaith's paper has pointed out, the explosion of search spaces. Our Genetic approach is
to realize state compression function. Thereby, it will be effective in improving the
convergence and robustness, not only of our SLA controller, but of any kind of
learning gait controller that to some extent observes sensory input.

Brooks and Maes (Brooks 1989, Brooks and Maes 1992) have been actively
studying a multi-legged robot that can learn to walk under a dynamic environment
through trials. Their robot is controlled by behavior-based distributed hierarchical
control units (Brooks 1989). The robot is given correction of behavior - a set of
commands that are triggered by sensory condition - and this behavior is coordinated to
achieve a given task - "walk", in this case - through reinforcement type learning. Our
SLA based controller is close to their controller in the sense that the appropriate
behavior (in the behavior-based approach), or the associations of action-state pairs (in
our SLA approach), are both given through stochastic reinforcement learning. The
difference is that our approach produces the reflection of legs, while the behavior-
based approach acquires the correction of a feasible set of actions. The reflection level
description is a more precise and universal description so that it is more powerful in
adapting to a dynamic environment. For example, this approach could easily be applied
to a situation where a number of muln-legged robots segment themselves or join
together dynamically. One drawback is again the explosion of state spaces as Brooks
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and Maes have pointed out. This paper is intended to explore to what extent this
simple approach can achieve a practical and endurable convergence using the
application of a state compression mechanism.

Gait Acquisition Through Individual Learning

Simple legged robot:

The legged robot considered in this paper is assumed to be controlled only by the
trigger signals that sequentially invoke one of the following three movements of the
legs (Fig.2): (im,) lift and recover the leg to a set-point near the body, (m,) lower the
leg and support the body, and (m,;) drive the body forward. Note that these three
actions are only assumptions to be held here, and that a greater variety of movement is
possible. The fundamental point is that each movement is invoked only by a trigger
signal. This means that, at each unit time, a leg is given only one of the following two
commands: an g, command, that causes a movement, or an @, command, that specifies
remaining in the current posture. Each movement will be controlled by a simple
scheme, such as an open loop control with limit switches; no model of dynamics is
necessary.

Each leg is separately controlled by its own controller; there are no restrictions as to
the number of legs and their configuration. The controiler consists of the following
three parts (Fig.3):

1. A state observer, that integrates sensory input and corresponds it to two types
of states, s and . As described later, s and ¢ contribute to the determination of the
actions and the teaching signals, respectively. A sufficient variety of sensors should be
prepared as they dominate the accuracy of the control. In the rest of the paper, we
prepare the following minimum variation of sensors: (1) leg state sensors, that detect
the actions carried out by each leg, (2) a landing sensor, that detects whether the robot
body touches the ground or not, and (3) a velocity sensor, that observes whether the
robot moves forward or not. The leg state sensors are corresponded to s, while the
landing and velocity sensors are combined into # to give a teaching signal.

2. A decision maker, that determines an action a; according to the current state s
and applies that action to the leg. This is done by using stochastic learning automata as
will be shown in the next section.

3. A critic unit, that gives a binary teaching signal b which specifies whether the
robot has succeeded to walk (b=1) or not (b=0) by referring to the state . The design
of this critic unit is essential to the behavior of the walking robot because the objective
of the learning is to maximize the expectation of b. A simple example of this critic unit
should be a combination of the following two decision criteria (Fig.4): whether the
robot touches the ground (Cl=1) or not (C1=0), and whether the robot succeeds in
moving forward (C2=1) or not (C2=0). Here, the condition C2=1 means that a leg has
performed the movement m, while one of the other legs remains in a posture between
m, and m,, or m, and m,. One possible combination is to let b=C1AC2.

From the above assumptions, there is no difficulty in extending the above mentioned
configuration to a more complicated real mobile robot; only the actions, states, and the
evaluation of the results of the actions would need to be considered in designing such a
robot.

Learning to Walk:

A controller corresponds a state s to an action g;, i=1 or 2. For each controller, the
objective in learning to walk is to acquire the set of these state-action pairs that
minimizes the expectation E(b) of failure. Here, by letting p,; =Pr(gls) be the
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probability of selecting the action g, at the state s, this learning process results in

acquiring these probabilities for all the possible states s.

One reinforcement learning scheme, specifically, stochastic learning automata (SLA)
theory, is able to let a controller acquire optimal probabilities under the assumption
that the probability of b=1 is stationary at each of the states (Narendra and Thathachar
1989.) Although this assumption is not proven to hold for the gait acquisition problem,
the computer simulations in a later section demonstrate that optimal actions are given
applying this scheme. The optimal gait is given because all the legs satisfy the condition
for walking, specifically, the condition of moving forward without touching the
ground.

The updating equation used in this paper is thel,, (Linear Reward-Penalize)
scheme, which is one of the major schemes of SLA. Let p,; be the feasibility (meaning
probability) of selecting the i-th action under the state s. Suppose the i-th action has
been performed under that state s. Suppose the evaluation b (b=1 when the robot can
successfully step to walk and b=0 otherwise) is given after the performance of that
action. The feasibility of selection of that action-state pair should be linearly
encouraged (or penalized when b=0). Also, the feasibility of other actions under the
same state s should be penalized since they do not contribute to walking (or, if 5=0, all
of them should be encouraged since they seem to have equal potential for contributing
to successful walking.) This is summarized in the following formulae:

Ifb=1a Py e—pﬁ-{_a(l_pﬁ)’ p-’j*j (—(l_a)p'v’ (1)

B
N-1 @)

where o and P €[0,1] are the learning factors for reward and penalty, and N
represents the number of actions. One problem with a reinforcement learning scheme is
that it takes many trials before achieving skilled action-state pairs. This convergence
deteriorates as the rate of failures increases during trials. Thus, we should avoid
settling an objective that is hard to achieve, especially for cases where the teaching
signal is given by the intersection among a number of criteria.

So far, the critic has determined a teaching signal b by taking an intersection
between C1 (for standing) and C2 (for moving). We extend it to achieve a greater
number of rewarded (b=1) cases as follows: from the definitions of C1 and C2, the
condition C1 must hold true (Cl=1) when C2 is true. Thus, by letting
(0,,0,,)=(1,0), and (Q,,,0,,)=(1,0.5), and by letting O=0,, X0, be the
probability of determining b as 1, the rewarded conditions are extended while the
objective condition C,AC, is retained, because Q,, X0, =1. By using this
probabilistic evaluation of the conditions, we can introduce a number of criteria, such
as the restriction that no more than two legs are allowed to land together, without
deteriorating convergence.

otherwise, p; < (1-P)p,, Py —1-B)p,; +

Evolutional Learning for Sensor Integration

Despite this method of improving convergence, the state spaces for controlling
walking are still huge. This is because the number of spaces is the multiplication of the
states for all the legs, and a walking robot may have any number of legs. After
acquiring a gait under a certain environment, if this environment changes, then, the
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learning process must work again to acquire another gait that can adapt to the new
environment. Much learning time may be required for the acquisition of the gait, and
this deteriorates the adaptability of the robot.

If the number of states is reduced into a smaller set, then the convergence of
learning will be improved; but, in some cases, the gait will never be found by such
compressed states. Thus, a compression method for states that well achieves both
adaptability and ability of learning needs to be found. The following describes a method
for acquiring such compressed states (referred to as principal pairs in section 1) using
a simulated evolution method. This method realizes the evolution of walking robots
where optimal sensory integration is acquired through generation.

Let the number of compressed states be M, and let the compression function be
m={(s,s ),s =1,...,N} where s is an original state and 5" is the state that corresponds
to s after compression. The problem of acquiring optimally compressed states is to find
a function m that maximizes the mean expectation of the teaching signals E(b).

This is a search problem through unknown huge spaces for maximizing an objective
function. Genetic Algorithms (e.g. Goldberg 1989) are suitable for this type of search
problem since the function m can directly be comresponded to a chromosome of the
GA. This is done by the following processes:

1. Prepare a population of compression functions {m(i),i =1,...,/V,} that contain
randomly generated elements (s,5") ranging from 1 to N for s and from 1 to M for s,
respectively. Let us indicate the robot that uses m(i)as K;.

2. For all R, evaluate the mean expectation E™(b(i)) of teaching signals through
on-line trials for a given number of intervals. These trials are carried out by changing
the compression functions sequentially one after another, without taking any break. Let
the fitness value for m(i) be E™(b(i)). E™(b(i)) is given by taking a moving average
of b over a certain interval.

3. Generate the next population of compression functions {m(i)} that improve
E™(b(i)) through Genetic Operators such as Mutation, Crossover, and Reproduction.
In the computer experiments described in the next chapter, a Traditional GA (Davis
1990) is used.

4. When the whole population converges in nearly the same function m*’, then
the optimal state compression is said to be found.

These processes are outlined as follows: let the number of the candidates for the
compression function be M. The robot uses a set of candidates for the compression
function successively for N unit times of trials for each; After all the candidates have
been used (after N*M unit times of trials), the next candidates for the compression
function are prepared according to the performances of each candidate logged during
the trials. Then, the successive trials begin with these new candidates. The candidates
are equivalent to the strings of GAs, the evaluation of the fitness function is the trials,
and the preparation of new candidates corresponds to the genetic operations of GAs.

Computer Simulations and Discussions

Simple computer simulations have been carried out taking a 1-Dimensional 4-legged
mobile robot as our example (Fig.5). The states s €({1,...,81} are generated by letting

= :=1 2,3 where g, takes the value 0, 1, and 2 when the previous movement of

the number j leg was m,, m,, and m,, Tespectively. For the sake of simplicity, the
dynamics of the robot are not included in the simulations, and the ground is assumed to
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be flat; only the inclination of the ground is considered. These experiments started with
a uniform probability table; thus, the robot began with random strides and thereby
converged into regular gaits.

Experiment 1: The first simulation is to observe whether the learning procedure
can adaptively generate gaits under a dynamically changing environment. In this
simulation, each of the controllers does not use the states s; s is fixed to 1 throughout
the simulation. Learning factors are set to a=0.5 and $=0.01. Reward ratio is observed
by taking a moving average over 30 unit times.

Figure 6 shows the change of the reward ratio plotted against learning time. The
reward ratio corresponds to the rate of gaits that successfully drive the body without
interlocking its strides. The simulation starts with the ground at a -15 degree
inclination, indicated as (a) in the figure. In this inclination, No.3 leg strides across the
point of intersection between the gravity vector from the center of gravity and the
ground surface(Fig.5). The same situation occurs with No.2 leg when the ground is
inclined to a +15 degree. Thus, the gait under a -15 degree inclination must differ from
that under a +15 degree inclination.

After 230 unit times, an optimal gait for a -15 degree inclination is given. The gait
diagram of the acquired gait is shown in Fig.7. At 270 unit times, the inclination is
changed to 0 degree, which is indicated as (b) in Fig.6. After 100 leaning steps from
there, another optimal gait is given as shown in Fig.7. The point (d) in Fig.6 shows
that the inclination is changed from -15 degrees to 15 degrees. Again, the optimal gait
is given, but it costs more learning time than the others. Thus, the robustness of the
proposed learning acquisition of gaits has been demonstrated.

Experiment 2: The previous experiment is for a controller with one state, and this
can only acquire a gait that is in a constant state of movement at each unit time. To
realize a gait that contains a period of suspended movement, specifically, a gait that
contains the action a, , the controller must observe the states for all the other legs. One
typical situation where a gait must contain the action a, where only a combination of
two legs are allowed to be in contact with the ground at a time. We refer to this
condition as C3. Experiment 2 was carried out to observe the effect of the introduction
of state observation. Here, the critic unit is designed by letting (Q,,,0;,) =(1,0.5) and
then, by letting =0, A Oy, AQsc;- Controllers without state observation were
prepared for comparison. Simulation parameters are the same as for experiment 1.
Figure 8 illustrates that, although the controllers with only one state could get a higher
reward ratio in the earlier steps of the simulations, they did not converge into an
optimal gait; while the controllers that observed 81 states could acquire the solution.
Figure 7 shows the diagram of the gait obtained.

Experiment 3: From the result of the previous simulation, controllers with large
state observation should be able to adapt to more complicated conditions, but their rate
of convergence is slow. Experiment 3 was carried out to acquire a state compression
function under the same conditions as in experiment 2; and to demonstrate the
effectiveness of introducing this compression function in improving the time needed to
achieve convergence. Parameters for the learning scheme are set to o=0.8. The
traditional Genetic Algorithm (Davis 1990) is applied by setting the parameters to 50%
crossover ratio, 1% mutation ratio, 6 cutting positions, 12 chromosomes per
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population, and 3000 unit times of trials for each of the simulations. The number of the
states after compression is set at 8; 81 states are compressed into 8 states.

Figure 9 illustrates that the reward ratio is gradually increased through the
generations, and that the optimal gait is given after 6 generations. The improvement of
convergence by the introduction of the compression function is demonstrated in
Fig.10. In this experiment, the inclination of the ground is changed from +15 degrees
to -15 degrees during the trials. Plot (A) in this figure shows the result for the
controller that used the state compression function acquired by the Genetic Algorithm,
and plot (B) shows that for the controller that observed the whole 81 states without
compression. The results show that the state compression function is effective in
reducing subsequent learning time caused by changes in the environment.

Conclusion

A method for acquiring the skill of walking for a legged robot by on-line learning is
proposed that mimics both the individual learning and the evolutional learning of life
creatures, which we should like to refer to as an A-Life approach. We propose a
distributed controller associated with each leg that learns whether to trigger the stride
of its leg or not according to the observed states. One difficulty in taking such a state-
oriented approach to the learning mechanism is that we have to reduce the explosively
huge state spaces. We demonstrate how Genetic Algorithms are incorporated with the
acquisition of state compression functions. From the universal and adaptive nature of
this approach, we expect that it can be applied to a wide variety of legged robots under
uncertain environments or configurations: for example, legged mobile robots that are
connected with each other; massively legged machines; or robots that walk unfamiliar
environments such as the inside of narrow pipes. Practical testing by experimental
hardware and proof of convergence of the proposed methods remain for further
research.

References

Adachi, H., Koyachi, N., and Nakano, E. 1988. Mechanism and control of quadruped
walking robot. IEEE control system magazine. 8, 5, 14-19.

Brooks, R.A. 1989. A robot that walks; emergent behaviors from a carefully evolved
network. Neural Compt. 1, 2, 253-262.

Davis, L., ed. 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold.

de Garis, H. 1990. Genetic programming. Evolution of a time dependent neural
network module which teaches a pair of stick legs to walk. ECAL 90. 204-206.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley.

Hirose, S., and Knieda, O. 1991. Generalized Standard Foot Trajectory for a
Quadruped Walking Vehicle. J. Robotics Research. 10, 1, 3-12.

Kumar, V., and Waldron, K.J. 1989. Adaptive gait control for a walking robot. J.
Robotics Systems. 6, 1, 49-76.

Maes, P., and Brooks, R.A. 1990. Learning to coordinate behaviors. AAAI-90, 2, 796-
802.

Narendra, K., and Thathachar, M.A.L. 1989. Learning Automata. Addison Wesley.

Snaith, M. and Holland, O. 1991. Quadrupendal walking using trained and untrained
neural models. I/JCNN-91. 2, 715-720.

Todd, D.J. 1985. Walking Machines - An Introduction to Legged Robots. Chapman
and Hall.

16§ |




FES

Fig.1 Experimental hardware of a 6 legged mobile robot. Each leg
has 2 motor driven joints that realize the vertical movement of the leg.
This machine is currently under construction.

Controllers for each of the legs

x e T T

among three states

Fig.2 A lcgged robot of which the legs are triggerd by autonomous controllers. Each leg
transits among three states. The transition m3 causes the actual traction force needed

for walking.
state
action |
: decision Legged Vehicle
—™ maker [T 7 (A leg)
Decide acion @; —
avsate 3 / b=1,0r0
Learn to reduce
Expectation critic ——— Give b =1when WALK

E(b =0I(s,a;))

Fig.3 Block diagram of a leg controller. Each controller independently observes sensory
input. The controller has its own critic. Therefore, any number of these controllers, that is,

any number of legs are possible for such a robot.
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condition C2: Not to cause gait interlocking

LA

a

Two decision criteria for walking. C1 means that the robot did not
maintain static stability; and C2 means that ambulaton did not cause traction
force because of interlocking.

condition C1: Not to touch the ground

e

A

Fig.4
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Fig.S Left hand of the figure shows the configuration of the simulated robot. Only

1-dimensiond strides are considered in this simulatdon. Right hand of the figure
illustrates this robot walking a slope inclined at 15 degrees. The gait

shown in this figure is not stable even though it was stable when the robot walked on
a flat surface. Thus, a robot walking between flat and sloping should adaptively

change its gait.

1r 1
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% 0.5 %
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{a) Inclined to +15 degree
(b) Changing to 0 degree
(@ (c) Cha.ngmg 10 -15 degree
——— 0
0 200 400 600 800
Learning Times
Fig.6 Simulation resuits of the robot walking in a Fig.8

dynamically changing environments. The axis

'Reward ratio’ corresponds to the rate of success of
walking. In this simulation, the inclination of the groud
is changed 4 times: Starting from a +15 degrees slope,
changing to a flat surface, a -15 degrees slope, and
finally a +15 degrees slope. Even though the learning
agents did not observe sufficient sensory inputs, this
figure shows that successful gaits were given after
only short periods of trials.

05 1

{a) With 81 states

(b) Without state
observation

1000 2000 3000

Learning Times

The comparison of the rate of success
between two simulations: in simulation (a),
a controller observes the states of all the
other legs; in simulation (b) the controller
does not observe these states. The major
difference between Fig.6 and Fig.8 is that, in
this simulation, the number of Ilegs allowed to
touch the ground at the same time is restricted
to 2. The results show that state observation is
necessary for gait acquisition under complex
walking conditions.
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(d) With not more than any legs making
contact with the ground at a time.

p7Zza = foot on the ground

Gait diagrams of the acquired gaits for figures 6 and 8. A horizontal line indicates whether a leg
is making contact with the ground (indicated by hatched block) or not (simple line segment) against time

passed. The leg numbers correspond to those specified in figure 5. A vertical line

corresponds to each of the unit times. According to the gait on figure (a), the robot was succeeding
in acquiring static stability by allocating the two of the legs landing phases backward of the body.

In figure (c), the same was done but with the landing phases forward of the body. Different from (2)
to (c), figure (d) was generated under the condition that not more than two legs were to make contact
with the gound at a time. As in (d), the gait should contain the state 'hold the leg off the groud'. This
means that, without state observation, this type of gait would not be acquired. This is illustrated by

Fig.7
the result shown in figure 8.
1 a
() Population maximum !
2 !
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(c) Population minimum

0
0 1 2 3 4 5 6 7 8

Generation

Fig.9 Change in fitmess values plotted against
generations. The fitness values correspond
to the reward ratio after 2000 unit times of
learning by the robot that used a chromo-
some as its state compression functon.
After 7 generations, an optimal state comp-
ression function that could achieve a success-
full gait after 2000 unit times was found. This
means that this type of state compression
function could be successfully introduced to
a walking machine using the Genetic search
method.
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Fig.10 Comparison of the convergence of the two simulated

robots. Each of the leg controllers observes the state
of all the other legs in the robot. In simulation (A), the
robot uses the state compression function generated
through the simulation in figure 9 (thus distinguishing
8 states); while (B) did not use the compression
function (thus 81 types of states were distinguished).
After the robot had acquired its regular gait, the incli-
nation of the ground wassuddenly changed to -15
degrees. The results in this figure show that the robot
with the state compressin function is more robust than
that without. It seems that the principal pairs under the
two inclinations are similar to each other so that the
post-learning process terminates within a short period.
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