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Abstract

This paper presents an approach to describing and synthesizing
group behavior using simple local interactions among individuals. We
propose that a set of basic interactions can be defined which can be used
to describe a large variety of group behaviors within a given domain.
This approach utilizes agent homogeneity and minimal communication
to simplify synthesis and analysis of group behavior.

To validate our approach we implemented a battery of basic group
behaviors implemented in the domain of physical spatial interactions.
We present some of the experimental results from two distinct envi-
ronments: a software Interaction Modeler and a collection of 20 mobile
robots. We also describe an aggregate behavior involving a combination
of the primitive behaviors.
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1 Introduction

Group behavior is a result of the local interactions between the members of the
group, and their interactions with the environment. Local dynamics between
individuals produce consequences at the global level. Thus, the group behavior
of interacting agents can neither be predicted nor analyzed by observing a
single individual. Unfortunately, analyzing a collection of agents is much more
complex than the already difficult single-agent case.

In this work, we present a methodology ; for describing group behavior which
allows for simplified synthesis and analysis. Qur approach consists of viewing
group behavior as a collection of basic, primitive behaviors, built from simple
local interactions, and combined into more complex aggregates. We apply our
methodology to two groups of agents (software and hardware), evaluate and
analyze the experimental data, and discuss the ramifications of the results.

2 Inference and Interference

In order for a society of independent agents to function, it must overcome
situations of persisting interference between its members. Even in the simplest
society in which all agents have identical goals' at all times, conflicts such
as competition for resources can arise. More diverse societies, where agents’
goals differ, demonstrate increasingly complex conflicts, including clobbering
of others’ work, deadlock, and oscillations.

Conflict among agents can be avoided if each agent infers the goals of
others. However, the ability to make such inferences requires a high com-
putational and cognitive overhead (Gasser & N. Huhns 1989, Rosenschein &
Genesereth 1985, Axelrod 1984). Work in both ethology and developmental
psychology suggests that inferring the goals of other agents is not necessary
for many complex interactions (Tomasello, Kruger & Rather 1992, McFarland
1987, Gould 1982, Rosenthal & Zimmerman 1978).

The alternative to inferring the goals of others is to base interactions only
on observable behavior. The interpretation of the observed behavior is deter-
mined by the amount of knowledge available to the agent. In biology, this
knowledge is innate and difficult to circumscribe. In contrast, computational
and robotic experiments allow for varying the goals and the amount of built-
in knowledge. Our work has demonstrated that significant information about

individual goals is reflected in behavior, and can be obtained by observation

without communication. 7.

3 Agent Homogeneity

To evaluate how much knowledge and communication 1s necessary, we have
focused on the simplest, but by no means simple, form of a society: one
consisting of homogeneous agents. The agents are homogeneous in that they

IWe define a goal to be whatever the agent is “programmed to do.” Goals can be
expressed explicitly or implicitly.
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are situated in the same world, embodied with similar dynamics (i.e. same
physical description) and have similar goals (i.e. same program).

Homogeneity has important implications. Identical agents have an innate
source of knowledge about each other, which allows for leaving much of the
information about the world implicit. Since agents share common goals, their
behavior is predictable to each other.

Homogeneity also offers a society flexibility in that agents are interchange-
able. They need neither identities nor the ability for individual identification.
Furthermore, in sufficiently large groups, irregular behavior of any individual
should not seriously affect the group, since no one agent is more important
than any other.

Taking advantage of homogeneity depends on a key property: agents must
be able to recognize other agents of the same kind. With this ability, which
is innate and ubiquitous in nature, even the simplest of local interactions can
produce purposive collective behavior. For example, while driving on a two-
lane road® and faced with an oncoming car, one is confident that the correct
behavior is to stay on the right, since the other car will follow the same strategy.
However, if instead of a car, a cow is approaching, there is no way of predicting
what the cow will do or what the correct response is. Homogeneity greatly
reduces individual cognitive requirements. We use this property for simplifying
the processes of generating and understanding group behavior.

4 Basic Interactions

Regardless of the simplicity of the individual agents, the global consequences
of even the simplest local interactions can be arbitrarily complex. In general,
it is impossible to predict precisely or even qualitatively what the global-
level behavior of such a system with interacting components will be (Mataric
1992, Weisbuch 1991, Wiggins 1990, Nicolis & Prigogine 1989). Societies are
by nature complex systems and as such cannot be usefully analyzed with
traditional methods.

While it is impossible to predict the behavior of an arbitrary society, we
propose that it is possible to perform qualitative analysis if the behavior of the
system can be represented as a collection of basic interactions whose dynamics
are well understood. Basic interactions are behaviors which can be considered
typical for a particular society. These behaviors are stable, repeatable, observ-
able at a global level, and determined by the goals and local interactions of the
individuals. Basic group behaviors may be observable in physical space (such
as flocking, herding, following, traffic jams), or in some abstract interaction
space of the society.

Our work is based on the hypothesis that most of group behavior consists
of such basic interactions. While the exact behavior of each individual may not
be known, the collective behavior is qualitatively predictable and repeatable.
[n practice, most societies are too complex (in terms of the properties of the
individuals as well as their interactions) to be modeled analytically. However,

’In the United States, for example.




the notion of stable group interactions can be used for qualitative analysis, as
well as for designing group behaviors.

We have applied the concept of basic group behaviors to a collection of soft-
ware and hardware agents. and have focused on their manifested, observable
interactions. By placing our experiments in physical space, we demonstrate
group behavior with simple examples of physical interactions and spatial pat-
terns. We used the constraints imposed by the environment and the mechanics
of the agents to construct a set of basic interactions we call behavior primatives
(Mataric 1992) which allow for a variety of group behaviors. The next section
describes our experimental environments, methodology, and results.

5 Experimental Methodology and Results

Biology, sociology, and anthropology provide important inspiration for this
work. However, our goal is not to simulate biological systems, but to study
group interaction by synthesizing, observing, and analyzing similar phenom-

ena. Since behavior observation is the primary methodology for [validating(

theories in this work, it is important to separate artifacts of the experimental
environment from effects intrinsic to the interaction being observed. Toward
this end, two very different test environments are used, one in software and
one in hardware.

The software environment consists of a Lisp program called the Interac-
tion Modeler which allows for modeling of agents with very simple dynamics
and sensing. This modeled environment is not intended to be a testbed for
developing strategies for physical robots. Rather, it is used for observing and
testing the behaviors of groups of different sizes and compositions, and com-
paring them to behaviors observed on physical robots. In experiments so far,
the agents were programmed to have local sensors for detecting nearby agents
and objects in the world. The software agents had no centralized control or
global communication capabilities.

The hardware environment consists of a collection of 20 mobile robots.
Each robot is a 12”-long four-wheeled vehicle equipped with proximity and
bump sensors. In front, each robot has a two-pronged forklift for picking
up, carrying, and stacking metal pucks. The robots are also equipped with
radio transceivers for limited data communication (seven bytes per second per
robot. ignoring a large error rate) and a sonar-based global positioning system.
The robots are programmed in the Behavior Language (BL), a behavior-based
parallel programming language (Brooks 1990). The sensors and the radio
system allow the robots to: explore their environment; detect each other; and
find. pick up, and carry pucks. These elementary abilities form the basis of
the robots’ various tasks and experiments, in which they run autonomously,
with all processing and power carried on-board.

An important property of the physical implementation is the inevitable
variability among the agents. Even after calibration, characteristics of the
sensors and actuators differ between robots. This fundamental property pro-
vides a stringent test for the robustness of our algorithms.
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5.1 Communication and Cooperation Limitations

Communication is a necessary tool for some but not all types of group behavior.
In order to determine just how necessary it is, we conducted experiments
comparing behaviors which use no direct communication with counterparts
that added a local broadcast ability.

No explicit one-to-one communication between agents is used in any of
these experiments. Instead, communication is based on sensing the detectable
state of nearby agents, and (in some experiments) broadcasting a simple mes-
sage to a limited area around the agent. Thus, no explicit cooperation exists
between agents. We define ezplicit cooperation as a set of interactions which
involve exchanging information or performing actions in order to help another
agent. In contrast, implicit cooperation includes actions that are a part of the
agent’s own goal-achieving behavior, but may have effects in the world that
help other agents achieve their own goals. In the experiments we describe,
cooperation is implicit, as agents affect one another by means of their position
and detectable state.

These communication and cooperation constraints were chosen in order
to test the limits of implicit communication as advocated by the previously
described developmental psychology and ethology theories.

5.2 Experimental Group Behaviors

We have developed a collection of simple local rules that implement the fol-
lowing basic behaviors:

Collision Avoidance: the ability of an agent to avoid colliding with
anything in the world. Two distinct strategies were devised; one for “kin”
(other agents of the same kind), and another for everything else that the
robot might encounter.

Following: the ability to stay behind or along side of another agent with-
out colliding (Figure 1).

Dispersion: the ability of a group of agents to spread out over an area in
order to maintain some predetermined minimum separation (Figure 2).

Aggregation: the ability of a group of agents to gather within some
predetermined maximum distance. This behavior is the inverse of dispersion
(Figure 3).

Homing: the ability of one or a group of agents to reach a goal region or
location (Figure 4).

Flocking: the ability of a group of agents to move as a coherent aggregate
without prespecified leaders and followers. Flocking includes components of
collision avoidance, following, dispersion and aggregation (Figure 3).

These behaviors were shown to be repeatable over many time-extended
trials. They are stable over a variety of initial conditions, and insensitive
to small perturbations in the sensor and actuator operation. Furthermore,
most of the behavior primitives were implemented with multiple algorithms,
with variations in performance due to the implementation details, but with
consistent overall behavior . The details of the robot implementations are
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Figure 1: The following behavior as demonstrated by three robots. The points
mark the robots’ positions based on radio data; the lines are the interpolated
path.
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Figure 2: The dispersion behavior. The irregularities in the path are due to
radio transmission errors generating flawed position data.




R .

406G

Figure 3: The aggregation behavior as demonstrated by 15 Interaction Modeler
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Figure 4: The homing behavior demonstrated by four robots. Home is located

ez

in the (0,0-50-50) region. The scale shown is in centimeters.
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Figure 5: The flocking behavior as demonstrated by four robots. The graph
plots actual robot paths. The room and robots are drawn to scale.

described in Mataric (1992). Additional experimental data is available in the
form of both video tapes and radio transcripts.

6 Combining Basic Behaviors

We are currently experimenting with a foraging behavior, which combines
the described basic behaviors. In foraging, the robots collect and take home
pucks which they find dispersed around the workspace. In addition to the basic
interactive behaviors, the individual agents also have primitives for recognition,
grabbing, and dropping of pucks. They have no model of the environment,
nor a global view of it, except for the preprogrammed coordinates of home.

Figure 6: The behavior structure of the foraging agents. The shaded states
indicate that the agent is carrying a puck.

Each robot runs the same BL program, which resembles a finite state ma-
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chine that activates and deactivates the various primitive behaviors (Figure 6).
The default state is wandering, in which a robot randomly moves around the
room. Avoidance behaviors are allowed to interrupt wandering, acting as sur-
vival instincts which keep the robots from getting stuck against walls or each
other. If, while wandering, the robot detects a puck in its path, it will enter a
grabbing state, in which it picks up the puck, and then a broadcasting state, in
which it transmits a radio message telling other robots that it found a puck.
The robot then heads home (homing), drops off the puck (dropping), and re-
sumes wandering. A single, isolated robot will repeat this cycle of randomly
searching for pucks and bringing them home. When in a group, however, two
variations are possible.

While wandering, a robot listens to radio transmissions in its vicinity.? If
it receives an announcement that a fellow robot has picked up a puck, it will
enter the tracking state and home in on the origin of the announcement, with
the assumption that one puck found means that more are nearby. Once it
arrives, the robot will begin searching, a more localized form of wandering. If
no puck is found within a fixed time period, the robot resumes wandering.

While tracking, a robot transmits a message which, when received by
nearby waendering robots, induces them to enter the following state and pursue
the tracking robot. When the tracker stops tracking and begins searching, the
followers do the same. With this minimal level of communication, a group
of robots maintains some ephemeral knowledge of its world (i.e. where pucks
are) and can cooperate to achieve a goal (i.e. bring those pucks home).

Our experiments have demonstrated two points: 1) coherent group be-
haviors in robots can result from simple local interactions; and 2) complex,
time-extended collective behaviors can be generated by the combination of a
few basic primitives. We plan to observe and analyze similar simple interac-
tions which produce global consequences in other group domains.

7 Summary

This paper has discussed an approach to describing and synthesizing group
behavior using simple local interactions among individuals. We have proposed
that a set of basic interactions can be found which can be used to describe
a large variety of group behavior within a particular domain. To validate
our theory we created an array of basic group behaviors in the domain of
spatial interactions of mobile agents. We implemented and tested the basic
behaviors in two distinct environments and are continuing to experiment with
composition and combination of these behaviors.
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