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It is shown that at least a few hundred stationary patterns may be found in a 1-
dimensional array of chemical oscillators described by the Brusselator model. During
conducted calculations all system parameters were kept constant and only responses of
chemical system to perturbations were the subject of studies. The developed patterns are
characterized by sharp maxima in concentrations of species U separated by areas of low
concentrations. The questions how many patterns are possible and how are they organized
are still the subject of study , however the following properties have been established:

a) Concentration of a component U as a function of the amplitude of perturbation forms
a staircase diagram.

b) Maxima in concentrations of component U may be obtained in any place in the system.

c) Distances between two maxima have an upper limit, however; below this limit any
distance is possible.

These fascinating spatial chemical structures are the subject of detailed studies which will

be reported in the coming paper.
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Introduction

Biological morphogenesis - development of complex organism from a single cell is
probably the most mysterious and fascinating phenomenon in the universe. However
development of forms is not exclusive to biological phenomena, but can also be observed in
chemical, physical and geological systems. These fascinating structures attracted the brightest
minds of the twentieth century such us (J. von Neuman 1966), (A. Turing 1952) or (S. Ulam
1976). Developed by J. von Neuman and S. Ulam the cellular automata theory shown that the
incredible reaches of forms and even behaviors can be observed when simple elements interact
together.  Furthermore, the paper by A. Turing shows that the interaction of diffusion and
chemical kinetics may lead to the formation of chemical structures where the concentrations of
chemical species are organized in space. This fascinating idea by A. Turing was explored by
many biologists and chemists.

At the same time the pioneering works of 1. Prigogine and G. Nicolis (I.Prigogine, G.
Nicolis 1977) on dissipative structures, the discovery of chaos, chemical oscillations and
chemical waves revolutionized modern science. The last ten years were very fruitful in
discoveries in the field of nonlinear dynamics especially in chemical systems. However, the
experimental realization of Turing structures has been achieved only recently (V. Castels,
E.Dulose, J. Boissonade 1990).

Alongside with the experimental efforts in obtaining stationary chemical patterns, many
theoretical works have also been done. Most of numerical calculations were oriented toward
finding necessary conditions for developing Turing structures, searching for structure in known
models of oscillatory chemical systems, and modelling experimental results. However, the
theory of Turing patterns has not developed substantially beyond the pioneering work of Turing
and later by the works of the Brussels group (M. Herschkowitz-Kaufman, G. Nicolis 1972) (
M. Herschkowitz-Kaufman 1975) . Turing theory deals with the spontaneous transition from
an uniform stationary pattern to a stable structure when concentrations are nonuniform in space.
This theory describes phenomena only in vicinity of the bifurcation point and can not describe
patterns which develop far from the bifurcation. Therefore the following important questions
can not be answered.

1. How many patterns are possible in a given chemical systems?
2. What kinds of patterns are possible in chemical systems?
3. What will be the bifurcation diagram?
4. How will the transitions from one pattern to the other will be ordered by the bifurcation
parameters?

There are not many theoretical papers dealing with these problems 9 D. Walgraef, D.
Dewel, P. Borckmans 1980), (D. Walgraef, G. Dewel, P. Borcmans 1982), (J.Vostano,
J.Pearson, W. Hosthemke, H.L. Swinney 1988). J. Vastano and H. Swinney have found, in
a simple model of a chemical system, that only few patterns may exist simultaneously. They
differ by the wave number. Most of patterns may not be reached by the Turing bifurcation but
only by special perturbations. Therefore, the response of chemical medium to perturbations
becomes the urgent issue. In this paper we will discuss in detail the problem of the response
of chemical media to the perturbation and the relation between perturbations and developed
structures.
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Numerical calculations

The calculations in our laboratory have been conducted with the Brusselator as a model
of an oscillatory chemical system. This model made it possible to conduct detailed studies of
patterns in the case of sinusoidal-close to Hopf bifurcation chemical medium.
The Brusselator model is given by the following set of differential equations;
dU/dt = A - B+1)U+UNV
dV/dt = BU - U*V
The following parameters were chosen for calculations:
A=1.0, B=3.5 D- diffusion coefficient for V componenet = 1x10*, diffussion coefficient
for U component is equal to zero. L=0.20, N=100 dt= 0.001 The explicit Euler
method of integration was used with non-flux boundary conditions. Solutions are nonsensitive
to time spacing but are sensiytive to spatial spacing. Therefore, this system should be treated
as nonhomogenous similar to biological multicellular systems.

Results
a. Staircase diagram

In the first series of experiments, the response of chemical medium to perturbations with
different amplitude was investigated. The uniform stationary state was perturbed in two central
cells with different values of U. Developed patterns are presented in Fig.1l. Obtained
stationary structures have very similar shapes characterized by five maxima, however the
concentrations of species U in maxima are different. The detailed diagram representing the
concentrations in a central cell as a function of perturbation is shown in Fig.2a, whereas Fig.2b
and Fig.2c represent magnified parts of Fig.2a. These diagrams exhibit a staircase similar to
the staircase which is obtained during the study of a phase locking phenomena. However,
between the steps, the typical self-repeating structures have not been found. In the range of
perturbation from 0.1 to 0.3 developed patterns have very low concentrations of component U
in the central cell. These patterns are characterized by four maxima and are presented in Fig.3.

Similarly to the patterns with five maxima these patterns have comparable shapes however
concentrations in maxima are different as well as positions of maxima are slightly shifted.
b. Memory effect

When the system was perturbed with the perturbation U=5.0 at different places in the
space, then a new and interesting phenomenon has been discovered. The maxima of
concentrations of species U in developed patterns were found in places of initial perturbations.
The pattern which developed after cell 50 was perturbed is presented in Fig. 4a and patterns
which developed after cells 74 or 89 were perturbed are presented in Fig. 4b and Fig.4c
respectively. The developed patterns have four or five maxima and are similar to patterns
discussed above, however, the chemical system actually "remembers" the position of the initial
perturbation.

This interesting phenomenon was studied more carefully and obtained results are
presented in Fig.5. The X- axis represents the dimensional space (100) cells. Dots represent
maxima in developed stationary patterns. The Y-axis represents points of initial perturbations.
The first row from the top corresponds to a pattern which developed after the cell 1 (first from
the left) was perturbed. The second row represents pattern which developed after the cell 2 was
perturbed. The diagonal line indicates that developed patterns always have the maximum in the




position of the initial perturbation. When the position of the perturbed cell changes so do the
positions of all maxima. However, the distance between maxima is preserved. A maximum
which is shifted to the right, reaches the boundary and disappears. At the same time the new
maximum is formed on the left side and the wavelength is preserved.

c. Separation of maxima

In the next computer experiment the system was perturbed in two places. The results

are presented in Fig.6a. The distance between perturbation points increases from top to bottom.
From the centrum of Fig.6a it is obvious that any distance between two maxima may be
obtained if it is less than the characteristic wavelength. The example of chemical patterns with
many maxima and different wavelengths is presented in Fig.6b. During our initial calculations,
few hundreds of stationary patterns have been found. There are the subject of a detailed study
which will be published in the coming paper.

Conclusion

The stationary chemical pattern discovered by us can not be described by the linear
Turing bifurcation theory. Similarly, the Hopf bifurcation can not predict or describe the
complex oscillations or chaotic attractors which may appear in dynamical systems. Therefore
we may assume that many new and complicated patterns will be discovered during the numerical
investigations of chemical stationary patterns. The structure presented in Fig.5 has a very
unusual property. We may observe smooth transition from one pattern to the other. It is
similar to toroidal oscillations where by continuously changing of initial conditions, oscillations
slightly shifted in phase may be obtained. If we assume that the 1-D stationary pattern may
be represented by the 1-D attractor then the structures discussed above should be presented as
the 2-D attractor.  The staircase diagram in Fig.2 suggests some relation with the high
dimensional torus. It should not be surprising because 100 interacting oscillators may be
described by a high dimensional torus. Therefore during the transition from torus to Turing
patterns many new surprising structures may be observed.
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3. Representation of developed patterns as a function of the place of single perturbations. x-axis
spatial coordinates ‘(cells). Dots represent maxima on developed stationary patterns. y-axis
positions of perturbations. The top first row represents the pattern developed after the cell 1 was
perturbed, second row represents the pattern after the second cell was perturbed.
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6. a) Representation of developed patterns as a function of a distance between two perturbation points,

y-axis distance between two perturbation points (from top to bottom)

b) Example of pattern with eight maxima and two different wavelengths
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