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Abstract

We show that certain modifications of Hebbian synaptic dynamics solve
the problem of epigenetic formation of bicontinuous maps or neurotopies be-
tween two layers of neurons. Our models of topographic self-organization are
biologically motivated, and incorporate competition between all the synapses

of a given neuron. This allows for a wide range of arborization and receptive

field sizes.

# Unité de recherche des Universités Paris XI et Paris VI, associée au CNRS

673 ‘




Introduction

A well established fact in neural systems is that anatomical interconnections between
two neuronal nuclei or layers are usually topographically ordered, i.e., nearby neurons in
one layer connect, via axons and synapses, to nearby neurons in the other. The best exam-
ples of these topographically ordered connections, called neurotopies, are the retinotopy
(projection from the retina to the visual cortex) and the somatotopy (projection from the
skin to the sensory cortex). A neurotopy forms a topographically ordered bicontinous map
from layer 1 (input layer) to layer 2 (the "processing” layer). Experimentally, a neurotopy
is detected by the following facts: a) each neuron in layer 2 responds to stimuli from a
subset of neurons in layer 1 forming the "receptive field”; b) each receptive field is local-
ized; c) if the geometrical center of the receptive field of a cell at position (x,y) is denoted
by (a*,b*), the map ¢(z,y) = (a*(z,y),b*(z,y)) is bicontinous, i.e., ¢ and its inverse are

continuous.

Two mechanisms, preformism and epigenesis, have been advanced to explain the for-
mation of these maps. The oldest theory, a preformist concept due to Sperry (Sperry, 1963),
hypothesizes that the map is produced by a set of chemical markers in layer 2 which are
under genetic control and which direct the neural fibers from layer 1 to their ”correct” tar-
gets. However this theory has two important weaknesses. First, it requires the existence
of a family of marker molecules which have not been detected. Second, it does not explain
the reorganization (plasticity) of neurotopies found in the adult after disruption of a layer
(Scharma, 1972). A refinement of Sperry’s theory replaces the family of markers by just
a few chemical species, called morphogens, which create through concentrations gradients
an implicit reference frame in layer 2. These models have had some success in explaining
experimental data, but they are still rather ad-hoc. In a completely different approach,
a number of workers (Kohonen 1982), (Linsker, 1989), (Ritter and Schulten, 1986), have
exhibited computer algorithms which will topographically order an initial map from layer
2 to layer 1 without using the existence of an implicit or preformed map. While these
computer models embody the central idea of epigenesis, creation of order from a random
or disordered state as the result of the application of a few rules, they have no biological
basis: a) they usually don’t deal with a network of neurons with synapses; b) they require

isolated pointwise stimulii; and c) they use an external global ranking mechanism.
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There are some epigenetic models which try to induce the self-organization of con-
nections using local and biologically plausible rules only (Amari, 1980), (Willshaw and
von der Malsburg, 1976), (Zhang, 1991). These attempts have used Hebb’s rule (Hebb,
1949), in which the synaptic interconnection strength varies with the correlation of pre
and post-synaptic events. In these models some amount of topographic ordering occurs
because the Hebbian dynamics encourages neighboring neurons to develop similar receptive
fields. However, unless the initial conditions are biassed appropriately, the map becomes
piecewise continuous only, global topographic ordering is not obtained. Extra non epige-
netic elements, such as pre-wiring to "proper” targets, must be introduced to achieve true
neurotopic maps. There are however two works (Bienenstock, 1983 and 1983) in which
global topographic ordering occurs for general initial conditions; the price paid is that the
models order only one dimensional layers with periodic boundary conditions and require
that one have equal numbers of neurons in the two layers. In this paper, we show that
one can remove these restrictions by appropriate choices of neural dynamics: we have been
able to exhibit a class of local epigenetic models which are biologically realistic, and which
self-organize both one and two-dimensional layers into globally ordered maps for generic
initial conditions. An important feature of our models is the modification of the basic
Hebbian mechanism by a term which incorporates competition between all the synapses
belonging to a given neuron. The omission of this term in previous neural network models

explains in part the long-standing failure to obtain global neurotopies.

Network Architecture and Dynamics

The architecture of our models is as follows. The two neural layers are composed of
neurons in a two-dimensional geometry with (discrete) cartesian coordinates (a,b) (layer
1) and (z,y) (layer 2). The axon for each neuron in layer 1 arborizes to have excitatory
synaptic connections with all of the neurons in layer 2. We denote the strength of the
synapse from (a,b) to (x,y) by Wazy qp; this quantity is assumed to be modifiable and
positive. The full connectivity guarantees that no bias or ordering is imposed on the
connections in the initial conditions or otherwise. This is in contrast to works which study
plasticity questions (Bienenstock 1982), (Miller, keller, and Stryker, 1989). Thus, in our
models topographic ordering can appear only though a process of self-organization. The

neurons in layer 2 are laterally connected by non-modifiable synaptic connections; we label




the corresponding strengths Sg/y oy. We take these to be positive, symmetric, and short
ranged.

Now for the neuronal dynamics. Denote the average firing rate or "potential” of a
neuron in layer 1 by Uy and in layer 2 by V,,,. We take V to be linear in each of its inputs.

These inputs come from all of the cell’s incoming synapses so that we have

Vay =Y WayaiUab+ Y Sey,ory Vary
ab 'y
or in matrix notation: V = (I — §)"'WU. We can think of the U’s (e.g., if layer 1 is
a retina) as the response to an image stimulus. In the ensembles of biological interest,
nearby neurons will have correlated stimulii, and so we take Uy and Ucq to be correlated
if the cells (a,b) and (c,d) are physically close. We thus define the correlation matrix
Qab,ca =< UgpUcq > — < Uap >< Ucq > where <> is the average over the ensemble of
stimulii. We take Q to be short range with positive matrix elements. Consider now the

the classic formulation of Hebb’s rule:
TWzy,ab = meUab

(7 is a time scale and a dot denotes a time derivative). This rule strengthens a synapse
whenever the pre and post-synaptic neurons are "active” or fire in near synchrony. It is
biologically plausible because it takes into account only the pre and post-synaptic states,
i.e., it is local. This is in contrast to the Kohonen-like rules which are completely non-
local. Many authors (Bienenstock, 1982), (Linsker, 1986), (Miller, Keller, and Stryker,
1989) have modified the above bare Hebb equation. One generalization is

TW::y,ab = V:t:yUab—' < sz >< Uqsp > _gny,ab

The average < V > is to be take over some time interval. Since 7, which gives the time
scale associated with changes in W, is very large, we can replace < V' > by the average over
the ensemble of images assuming the W’s are fixed. Similarly, for the long-time behavior,
VU may be replaced by its average. U can then be eliminated, and the first two terms of
the right hand side of the above equation become (I — S)™*W Q. This dynamics tends to
develop local order, as shown in (Amari, 1980).

34




682 '

To obtain global order, it is necessary to go beyond this type of Hebbian dynamics.
We do this by introducing competition between the synapses of a given neuron. Such
a competition is biologically justified: the biochemical reactions in the synaptic regions
require among other things ATP and nerve growth factor which must be actively trans-
ported from the main body of the neuron to the synapses. When a neuron has only weak
synaptic connections, there is very little competition because there are enough resources
for all synapses of the cell, but when the neuron has many strong connections, the cell
body cannot cope with the demand, and competition among the synapses becomes strong.

This leads us to consider models which have the following synaptic dynamics:

Tny,u.b — [(I - S)_le]zy,ub — g1 Z W;cy,a’b' — gz Z W:r’y",ab - QSme,ab

a'b! 'yt
The g’s are parameters which may vary with the level of activity of the cells (see later).
These quantities and the constraints Wzy,ab > 0 are the only source of non-linearities of
this model. We have found that for a broad range of g functions, the W’s self-organize to
form a topographic map. We begin by explaining how the network self-organizes in one

dimension, and then proceed to the two-dimensional case.

Case of One-Dimensional Layers

We label the neurons in the one-dimensional input (respectively processing) layer
according to the natural order ¢ = 1,2,---M' — 1 (resp. z = 1,2,---M — 1)). This
labelling reflects the fact that there are extremities to the layers; the ring geometry is not
appropriate. The W, , are given initial values which are small, positive, and random. Thus
at the beginning of the self-organization, the competition between the synapses is weak:
g1 and g, should be small, so we first consider the limit g; = g» = 0. For the propose of
the analysis, we take g3 to be the same for all neurons. This has the advantage of leading
to dynamics which can be treated analytically because the equations for synaptic change
are "quasi-linear”, i.e., are simple in a certain basis. Consider decomposing W (thought
of as a vector) in terms of the eigenvectors of the Hebbian operator: H(W) = (I —
5)T'WQ. For ease of presentation, we shall work with special choices of § and Q so that
the eigenfunctions can be written down explicitly, but the final results will be insensitive
to the details of S and Q. If § and @ are short range, positive, symmetric, and translation

invariant, up to an additive constant they essentially correspond to second derivatives. For




zero boundary conditions (no inputs from outside the layers), the relevant eigenfunctions
are approximately sines in each variable: U,, /(z,a) = sin(mwz/M)sin(m'ra/M') with
m (resp. m') =1,2,--+ M —1 (resp. M’ —1). Then at all times, W(t) = 3 Am m! () ¥m,m’
with Am‘mr (t) = (Ambim' — g3(t))Am,m: (1) in the quasi-linear regime (W > 0,91 = g2 =0,
and g3 location-independent). A, and s are the eigenvalues of the linear operators in z
and a space from which the Hebbian operator is constructed. For the models of interest,
these eigenvalues are strictly positive, and the fastest growing modes are ¥y 1, ¥ 2, ¥5 1,
T, ,, etc... The above dynamics continuously "purify” W to make it more and more like
W, ;. If g3 is an increasing function of the total synaptic strength or activity in the network,
then the system converges to a time independent state given by a multiple of ¥; ;. (In
a similar spirit, Bienenstock et al. chose the growth rate of synapses to depend on the
maturity of the entire network.) The state ¥; ; does not correspond to a topographic map
because W, , has no correlations between z and a. To get correlations, W must be the
sum of several eigenmodes. What would be the ideal linear combination? We can map
layer 1 to layer 2 by a simple stretching; in continuum notation, this would correspond to

™m m'Ta

)

Waa = bz /na/pr = Zsin(

where § is the delta function and we have dropped irrelevant multiplicative factors. If at
some point W is given by the first few terms in this series, the large scale features of the
connections will be correct; one can then simply refine the receptive fields to obtain the
desired neurotopy.

Above, we saw that the purification enabled one to obtain the first term in the above
series. The parameters g; and g» give the second term in the following way. As the W’s
grow, the competition between synapses increases, so g1 and gz turn on. If the Hebbian
eigenfunctions are exactly the sines used above, the g; and g terms do not affect the growth
of ¥, 5, but they suppress the growth of ¥y 1, ¥; 5, and ¥; ;. Even if the eigenfunctions
are not exactly sines, the qualitative behavior remains the same: the growth of these first
three modes is suppressed much more than for the analogue of ¥3,. By increasing ¢:
and g, eventually ¥; ; becomes unstable to ¥y perturbations. Such perturbations will
grow, and W will become essentially of the form A;1(¢)¥:1,; + Az 2(t)¥s22; in addition,
A, ; decreases whereas As o increases with time. When A, » reaches a large enough value,

the neurons at the edge of the cortex see their W’s connecting to one of the edges of the
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retina vanish (since ¥, > has negative components, whereas W, 1 is positive everywhere).
Thereafter, the region of zero W’s grows like a moving front and these neurons develop
narrow receptive fields. The two-dimensional analogue is illustrated in Fig. 1. This process
then affects the neurons further away from the edge of layer 2, and soon all layer 2 neurons
have narrow receptive fields. If A; 1 and A4, » are of the same sign, we obtain the *direct
map” as given by the above delta function. If they are of opposite sign, we obtain an
inverted map with one layer reflected. These are the only two classes of topographic maps
in 1 dimension. Here the existence of several classes of topographic maps follows from
symmetry considerations.

One can also understand the self-organization mechanism using an argument based
on energetics. For fixed g’s, the synaptic dynamics of our model is of gradient descent
type. Then the W’'s converge to local minima of an energy function. Because of the
Hebbian term, there is an energy cost for discontinuities in W. It is thus natural to expect
the absolute minimum of energy to correspond to a bicontinuous map, giving one of the
allowed topographic mappings. We know from simulations that the energy function also
has local minima, and that these correspond to piecewise-continuous maps. The slow
growth of the coupling constants g; and g, allow the energy landscape to change smoothly
and drives one into the global minimum. Our procedure is thus analogous to Hopfield and
Tank’s suggestion for finding energy minima (Hopfield and Tank, 1986). Note that the
g1 term controls the receptive field size and the g, term controls the arborization size of

retinal cells.

Case of Two-Dimensional Layers

The above self-organization also occurs in two-dimensional layers. Consider rectan-
gular layers with zero boundary conditions, taking (a,b) and (z,y) to be the cartesian
coordinates of the neurons. Again, we begin with g = g» = 0, and g5 identical for all
neurons, we work in the eigenspace of the Hebbian operator, and we take S and Q to act as
Laplace operators (the results hold for more general operators also). If the dimensions of
the input (resp. processing) layer are M'—~1, N'—1 (resp. M —1, N —1), the eigenfunctions
are:

Ynn,mn (2,a) = sin(mmrze /M )sin(nry /N )sin(m'wa/M')sin(n'wb/N')

The fastest growing modes are Y13 11, ¥11,12, ¥11,21, 12,11, T21,11, T12,12, T12.91, Wa1,12,
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Wy 21, ... One of the topographic maps we wish to obtain is the "direct” map, which we

represent symbolically as

Wey,ab = Oz /a0y Npyne = ¥11,11 + U912 +Par21 + oo

where again multiplicative factors have been dropped. Just as in the one-dimensional
case, if we can get W to be given by the first few (e.g., three) of these modes, then further
refinement will lead to the desired neurotopy. The first term of the sum can be obtained
from the purification process when g; and g» are small. At the end of this quasi-linear
regime, W is 2 multiple of ¥y; ;3. Then we need to make W12 + ¥21,21 appear at the
expense of the other modes. As one increases g; and g, the growth rate of ¥y; 33 is
decreased by (an amount proportional to) g1 + g2, that of ¥y; 3; and W15 1; by g1, that of
;1,21 and 1112 by gz, while W13 12, To1 01, V21,12, and ¥yp 2y are unaffected. (Even if
the wave functions are not exactly products of sines, the qualitative effect of g; and g> on
the growth rates remains the same.) Thus eventually ¥;;,1; destabilizes and the synaptic

strengths become of the form

W = A1111011,01 + A12,12%12,12 + A21,21 %2121 + A12,21 %1221 + A21,12P21 12

We see that there are still too many modes present. This is because there exists several
topographic maps other than the ”direct” one: for instance W = Wy 13 + P12.21 + ¥21,12
leads to a map where one of the layers has been reflected about the diagonal. There are
a total of eight topographic maps for this geometry. Which map is "selected” varies with
the geometry of the problem as the above ¥’s usually have different growth rates (Letelier
and Martin, 1992).

In a generic rectangular case, all the eigenvalues of the Hebbian operator are non-
degenerate. Assume for instance that ¥,y »; grows faster than Wiz 91 or s 12 or ¥yz 1.
Then W becomes of the form 433 11 %1111 + A21,20¥21,21. As Wpy 07 grows at the expense
of ¥y; 11, some W’s begin to vanish exactly as in the one-dimensional case. Eventually all
cortical neurons develop receptive fields in the shape of stripes parallel to the b direction
as in Figure 1. The W = 0 values effectively restrict the coordinate domain, 50 the system
almost becomes a collection of one-dimensional networks. As g; and gs increase further,

the W's develop a new instability in the b and y directions. Then the cortical cells in
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different stripes collapse their receptive fields similarly because there is some amount of
coupling between these stripes. The most unstable mode of the striped configuration is
essentially W15 15 which gives rise to the desired neurotopy, and the final (e*,b*) map is
bicontinuous as long as the g’s were not increased too quickly. Figure 2 shows the final
map for a run from a random initial start where g; and g, were slowly increased. The 17x7
dots represent the coodinates of the cells in the retina. The nodes of the wire mesh give
the value of (a*,8*) for each of the 13x8 neurons in the cortex (layer 2). Links have been
draw connecting the nodes corresponding to neighboring neurons in the cortex allowing
a visualization of the neurotopy. It is interesting to note that if the g’s are fixed from
the begining one can fall into a local minimum of the energy function. Such maps can
be obtained from Figure 2 by twists (thereby forming a bow-tie) or by cuts and stretches.
The slow growth of our g’s can be said to be analogous to the annealing schedule used
in Kohonen-like networks. Instead of taking the g’s as given functions of time, it is also
possible to consider g’s which are functions of the cell’s local activity, or total synaptic
strength, and even to change the form of the terms multiplying the g’s, e.g., by raising
them to a power greater than one. Such models are local in the strictest sense, and we

found by simulation that their qualitative behavior is the same as the cases explained here.

The attentive reader will have notived that the self-organization rest primarily on the
non-degeneracy of the Hebbian operator. Non-degeneracy is generic, so that irregular or
biologically realistic network geometries will give rise to neurotopies in the context of our
synaptic dynamics. On the other hand, if there is a degeneracy in the leading eigenvalues,
the creation of neurotopies is much less robust. In particular, we have found that for a
square geometry, the system will select one of the topographic maps only if the g’s are

increased extremely slowly.

In summary, we have modified Hebb’s equation by including terms which expresses
the competition among all the synapses of a given cell. This enabled us to exhibit a family
of local neural networks which self-organize into topographically ordered maps without the

need for markers or special initial conditions: the self-ordering is purely epigenetic.
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Figure Captions

Figure 1: Receptive field of a cortical neuron after the first instability for a network
with two-dimensional layers. Plotted are the strengths of the synaptic connections.
Figure 2: Representation of the final state of the map between a 7x17 "retina” and

an 8x13 "cortex”.




