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Abstract

Experimental studies of coupled chemical cells are briefly reviewed
and compared with respect to the extent of time delay. Relevance of
studies of circulating firing patterns in coupled cells with time delay
for information storage are mentioned. Models of arrays of reaction-
transport coupled cells with time delay are introduced and studied for
excitatory and oscillatory chemical systems in the form of firing patterns
arising either as a response to superthreshold concentration stimula-
tion in an excitatory system or resulting from coupling in oscillatory
systems, respectively. It is illustrated for Oregonator model of the
BZ reaction that a single stimulation of a single excitatory cell with a
delayed feedback acting on the input and /or of two or three coupled cells
with a delayed mutual mass exchange can cause an excitation of a single
pulse, a finite series of pulses (firings) and of an infinite circulating series
of firings in dependence on the amplitude of the stimulation, the extent
of the time delay and the intensity of the coupling among the cells. The
regions of parameter space (intensity of coupling, time delay) for the
existence of circulating firings are determined. Existence of periodic,
quasiperiodic and chaotic patterns in the form of standing waves in
coupled minimal bromate oscillators are also discussed.
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1 Introduction

Large number of reaction-diffusion systems of biological origin, for example
those forming active (excitable, conducting) tissues in neuro- and cardio- phy-
slology are discrete, consisting from cells (compartments) mutually coupled via
electrical and/or mass exchange (chemical) contacts. Propagation of impulses
in the form comparable to front and pulse waves is a common feature of such
systems (Holden et ol 1990). Circulating "waves” are of a special importance,
particularly in myocardial and brain tissue. For example, the recent results of
PET scanning show that working memory is located in the pre-frontal cortex.
Working memories are retained by the continuous activity of particular neurons.
These neurones stimulate themselves either directly or via a loop involving others.
When they stop firing, the memory is lost unless it has been passed on to the
hippocampus for more permanent storage (Gelenbe 1991, Amit 1989).

In this paper we study the conditions of existence and properties of circulating
excitations ("firings”) in several compartmentalized chemical systems. We shall
concentrate our attention on the effects of time-delay on the properties of simple
circulating spatiotemporal firing patterns. Compartmental chemical systems are
now relatively well understood from the point of view of agreement between ex-
perimental observations and simulations based on robust mathematical models,
after more than 25 years of research.

Studies of model chemical compartmentalized systems have been at first only
theoretical. Thus Prigogine and Lefever have studied two coupled cells (Prigogine
and Lefever 1967). Scriven and Othmer (Othmer and Scriven 1971,1974) and
Martinez and Baer (Martinez and Baer 1973) have analyzed the stability proper-
ties of arbitrary network of compartments, mostly by analytical methods. Bunow
and Colton (Bunow and Colton 1975) have studied behaviour of linear array of
cells with enzyme with substrate inhibited kinetics. They have found asymmet-
ric steady state concentration profiles. Two coupled CSTRs with mutual mass
exchange and oscillatory Belousov - Zhabotinski (BZ) reaction have been first stu-
died experimentally in 1975 (Stuchl and Marek 1975). Later, asymmetric steady
state concentration patterns and their stability have been investigated in a hexa-
gonal structure of seven reactors (CSTRs) with mutual mass exchange (Stuchl and
Marek 1982). Two coupled CSTRs with an oscillatory reaction and direct mass
exchange were also studied experimentally by Sawada and coworkers (Fujii and
Sawada 1978, Nakijama and Sawada 1981,1988). Two CSTRs coupled electrically
were investigated by Crowley and Field (Crowley and Field 1986) and Crowley and
Epstein (Crowley and Epstein 1989). Dolnik et al. (Dolnik et al 1987) have stu-
died experimentally two coupled CSTRs with mutual mass exchange, oscillatory
BZ reaction and concentration forcing of one of them. Breton et al. (Breton et
al 1986) and Marmillot et al. (Marmillot et al 1991) have studied experimentally
multiple steady states in two and three coupled CSTRs with mutual diffusional
coupling. They have used a photobiochemical reaction catalyzed by immobilized
thylakoids and demonstrated both experimentally and on numerically solved mo-
dels the occurrence of both stable symmetric and asymmetric steady states in a
circular and linear array of cells. Laplante and Erneux (Laplante and Erneux
1992) have studied a one-dimensional array of 16 coupled stirred tank reactors.
They have used the bistable chlorite-iodide reaction and studied propagation of
the front wave in the system. Weiner et al. (Weiner et al 1992) studied two
identical chemical oscillators (minimal bromate oscillator) coupled by means of
the mutual regulation of the flow rate of one reactor by the output of the other
and vice versa according to measured Ce** ions concentration with defined time
delay and intensity of coupling. Kosek and Marek (Kosek and Marek 1993) have
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studied experimentally propagation of excitation in two continuous stirred tank
reactor cells mutually coupled via direct mass exchange through the common wall
and modelled the propagation of excitation in a linear array of N-coupled cells
via the Oregonator model. Raschman et al. (Raschman et al 1986) have studied
periodic and aperiodic regimes in linear and cyclic arrays of coupled cells with
mutual mass exchange and Brusselator kinetics. Theoretical and computational
studies in coupled cells are numerous and have been recently revieved in two book
publications (Scott 1991, Marek and Schreiber 1991). Review of chaotic regimes in
coupled and forced excitable and oscillatory cells have been also published recently
(Marek and Schreiber 1993).
In the above listed experimental studies of coupled cells three ways of the
coupling were realized :
a) mass coupling via direct convective-diffusive mass exchange between
neighbouring cells,
b) electric coupling,

¢) mass coupling via pumping between the cells.

These ways of coupling differ in the extent of the time-delay in the coupling sig-
nal. In the case a) time-delay is low, in the case b) the extent of the coupling-delay
can be controlled (e.g. via computer) and the case c) always includes significant
time-delay.
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Figure 1:

a) Group of synapses, cf. (Sheperd 1979). AFF - afferent axon, AT - synapse of
external axon, PD - dendrite of principal neuron, ID - dendrite of intrinsic neuron.
b) Configurations studied in this paper.

Recently we have designed an experimental set up of three flow-through CSTRs
with the possibility of using all three above ways of mutual coupling. Hence we
should be able to study and compare the effects of time-delay introduced by various
ways of coupling. In this paper we present first the results of the study of the time-
delay on the propagation of excitations and wave-like spatiotemporal patterns in
the excitable Belousov-Zhabotinskii (BZ) and discuss also wave regimes in a mini-
mal bromate (MB) oscillatory reaction mixtures modelled by the Oregonator and
Minbromator models. We believe that both experimental and connected modelling
studies of circulating waves under relatively well defined conditions can be of
importance in the understanding of both chemical and electric synapse. A sketch
of a group of synapsis according to Ref. (Shaperd 1979) is shown in Fig. 1la. The
modelled systems of coupled cells studied in this paper are schematically shown
in Fig. 1b.




2 Models of arrays of reaction-transport
coupled cells with time-delay

Let us consider a linear or cyclic array of cells. Each cell can exchange mass
both with the environment and with its neighbours. Mass balances for the system

of N coupled cells with n reaction components may be written in the form
N

dekfdt = Fileh, k) + iy Y 8HE(E— 1)~ h(0) o

=1

Here cf is the concentration of the i-th reaction component in the k-th cell,
fi : R® — R are functions describing reaction kinetics and mass exchange with
the environment. The rate of transport of the i-th component between the cells
is proportional to the difference between the concentrations c}(¢ — 7) and ck(2),
where 7 denotes time-delay in the concentration of the component j exchanged
between the I-th and k-th cells. Here 6" = 1 when the coupling exists, otherwise
6'¥ = 0. The configurations studied in this paper are schematically depicted in
Fig. 1b.

3 Numerical method

Numerical integration of a non-autonomous system of ODEs can be computer
time-consuming task, particularly if the dimension of the system increases. We
have used a modified semiimplicit Runge-Kutta type 4** order method with an
automatic control of the step length. The original non-autonomous system of Eqs
(1) dp/dt = f(p,t) (p is a vector of state variables and ¢ denotes time) has been
transformed into an autonomous system

dp/ds = f(p,t) (2)
dt/ds = 1
After each integration step were the values of ¢, p and dp/dt added into a

shifting queue (stack) of saved values. The values of p(t — 7) (7 denotes time-
delay) were then obtained from the course of the queue of saved values in the
proper neighbourhood of the point (¢ — 7). The elements of the Jacobi matrix of
the system have been evaluated as

dpi(t — 7)/dp; = (dpi(t — 7)/dt)/(dp:/dt) (3)
where the values of dp;(f — 7)/dt were also obtained by a Lagrange interpolation
from the shifting queue of saved values.

4 Oregonator model

The well known Oregonator model of the BZ rection (Field and Noyes 1974)
have been used in the form

AX,Y,Z) = kBY — kXY + ksBX — 2ks X2 + ko(Xo — X) (4)
AX,Y,Z) = —kBY — kXY + fhsZ + ko(Yo - Y) (5)
BX,Y,Z) = ksBX — ksZ + ko(Zo — Z) (6)

where X denotes the concentration of HBrO,, Y the concentration of Br—, Z the
concentration of Ce** and B the concentration of BrOj , respectively. The values
of the parameters used in the modelling of experiments of excitation propagation
in two coupled cells, cf. (Kosek and Marek 1993). have been used also in this
study, cf. Table 1. '
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Table 1: Oregonator parameter values.
parameter | value parameter | value
ky 2.00 dm3.mol~t.s7' || Xg 0.00 mol.dm ™3
ks 2x10° dmlmoll.s7! || Yo 1 x10"% mol.dm™3
ks 1 x10* dmB.mol~t.s7! || Zg 1x10™% mol.dm™
k4 5x 10"  dmf.mol~l.s™! || B 0.10 mol.dm=2
ks 1.00 st f 1.00
ko 5x107% st

5 Firing patterns in the Oregonator model

5.1 Single reaction cell

The most simple model of a reaction cell (an enclosure, cell compartment, a
neuron synapse, etc.) can be represented by a single continuous srirred reactor
with a delayed feedback, cf. Fig. 1a. We shall study the response of such a reactor
to a single superthreshold concentration stimulation with an amplitude A. In the
Oregonator model we consider that the amplitude A < 0 as we assume that the
perturbation corresponds to a decrease of the concentration of Br~ ions caused by
an addition of Ag" ions into the reactor, cf. experimental procedure and results
in (Kosek and Marek 1993).

Global simulation study of the single reactor for values of parameters describing
an excitable regime in the reactor has revealed the following types of the behaviour
(firing patterns) : '

Pattern A : A single excitation ("firing”) occurs in the cell, cf. Fig. 2a-c. We can
observe in the Figure that single full amplitude excitation occurs and then
the excitations decay relatively fast. The succesfull firing can be identified
on the basis of the time course of Ce*t or Br~ ions (proportional to redox
potential changes), similarly as in (Kosek and Marek 1993).

Pattern B : A finite cascade of firings, with the firing number n occurs, cf. Fig.
2d. It means that the reactor is able to selfexcite itself and the period of
firings ("selfexcitations”) is determined by the value of the time-delay.

Pattern C : Permanent firing. For sufficiently large value of the time delay the
cell can selfexcitate itself continuously (n = o), cf. Fig. 2e. This situation is
analogous to periodically stimulated single CSTR without a time-delay with
superthreshold amplitude of the stimulation and the period of stimulation
T > Tg (Tr is a refractory period) cf. (Schreiber and Marek 1993).

Pattern D : When the feedback flow (the value of the parameter k.) increases,
it becomes a controlling process and we can observe a single slowly decaying
oscillation in the reactor, cf. Fig. 2f.

5.2 Cell arrays

The behaviour described above (patterns A — D) are in principle preserved in
cyclic cell arrays. However, the excitation will not propagate for lower values of
the mutual coupling (mass transport) coefficient k. through entire cascade.
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Figure 2: Time course of Z concentration in a single CSTR with delayed feedback,
A=0.75 x 1078, '

a), b), c) Single successful excitation; k, = 0.90s7%, 7 = 8.0s. a) log Z(¢), b)
log Y'(2), c) log Z(t) vs log Y(2).

d) 31 successful excitations: k, = 0.90s71, 7 = 24.0s, log Z(t).

e) Continuous firing, k, = 0.90s71, 7 = 24.5s, log Z(t).

f) Mass transport driven regime - very slow single excitation, &k, = 1.02s71, 7 =
24.0s, log Z(t).

Pattern E : For example, for two reaction cells we observe the pattern where the
firing occurs in a single cell only, 7y = 1 and ny = 0 (n; denotes the number
of firings in the é-th cell). This will be denoted as pattern E and it has been
discussed in detail for two cells in (Kosek and Marek 1993).

Generally, in the cyclic arrays of two and more coupled cells we can observe
firing regimes belonging to the pattern B, where for two cells either n, = n,
or n; = nz + 1, n; > 1 and in the case of three cells either Ny = Ny = N3 Or
My =Nz =nz+1lorn; =ny+1 and n; =nz; n; > 1.

Examples of the time courses of the variable Z for two cells are in Figs 3a,b
and for three cells in Fig. 4a-c.

The overall dependence of the firing numbers ni, n, in two coupled cells on
the time-delay is depicted in Fig. 5. We can observe the sequence of regimes with
increasing values of firing numbers n, and np and the existence of a limit value of
the time-delay 7~ for the permanent firing. For values of time-delay r > 7* two
cells mutually stimulate themselves indefinitely, i.e., ny = n, = co.

Typical diagrams of computed regimes in the parametric plane mass transport
(coupling) coefficient &, — time-delay T are given in Figs 6a-d. For high values
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Figure 3: Time course of Z concentration in two coupled CSTRs with a delayed
mass exchange, A = —0.75 x 1075, k, = 0.90s7!, 7 = 12.0s.

a) log Z1(t) - 16 successful firings.

b) log Z,(t) - 15 successful firings.
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Figure 4: Time course of Z concentrations in a cyclic array of three CSTRs with
a delayed mass exchange, A = —0,75 x 107%, k, = 0.90s™, 7 = 8.0s.

a) log Z;(t) - 12 successful firings.

b) log Z(t) - 12 successful firings.

c) log Z5(t) - 11 successful firings.

of k, we can observe slow decay of single excitation (pattern D). In the region of
low values of time-delays and intermediate values of k; a single firing in each cell
exists (pattern A). When the value of the time-delay 7 is increased we subsequently
observe regions with finite number of firings (pattern B) and finally continuous
firing (pattern C). In arrays of cells we can observe the presence of the pattern E
for lower values of k.

When Figs 6b and 6¢ obtained for different stimulation amplitudes are com-
pared we observe that when higher absolute value of the stimulation amplitude
(A) is used, then the regions of the parameter space with patterns B and C are
located in narrower range of values of the mass transport (coupling) coefficient
k.. When even higher stimulation amplitudes are used (4 < —0.86 x 107°) then
the regions of patterns B and C disappear from the diagrams. Hence we can ob-
serve qualitatively similar type of the propagation failure as reported earlier in
experimental study of two coupled excitable cells (Kosek and Marek 1993).
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Figure 5: Dependence of the number of firings n;, 72 on a time-delay 7 for two

CSTRs with a delayed mass exchange, A = —0.8 x 1078, k, = 1.00s~1.
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Figure 6: Various firing regimes in the plane mass transport coefficient k, — time-
delay 7. A - single firing in each cell, B - multiple firings in each cell, C - continuous
firing, D - mass transport driven regime — single slow excitation, E - single exci-
tation in the stimulated reactor.

a) Single CSTR with a delayed feedback, A = —0.75 x 1075.

b) Two CSTRs with a delayed mutual mass exchange, A = —0.75 x 107¢.

¢) Two CSTRs with a delayed mutual mass exchange, A = —0.80 x 10~6.

d) Cyclic array of three CSTRs with a delayed mass exchange, A = —0.75 x 10~¢.

6 Minbromator model

The inorganic core of the BZ reaction forms the basis of minimal bromate
oscillator (Noyes et al 1971). Here we are using the variable version of the model
proposed by Schreiber (Shreiber 1992). The model has been used in the form

filz,y,w) = [—zy+ gy — 2% — z+ Ksu(z,w)? + u(z, w)w — _
Kez(c — w)]/E + Ko(—z) | (

-1
"
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foz,y,w) = [—gyv(z,y)— 2y — qy]/q + Ko(yo — ) (8)
filz,y,w) = —u(z,w)w+ Ksz(c— w) + Ko(wo — w) (9)

where z is scaled concentration of HOBr, y is scaled concentration of Br~,
w is scaled concentration of Ce3t, ¢t is dimensionless time, K5, K¢, q, E are
kinetic parameters, Ky, ¢ are reactor parameters, wg, Yo are input concentrations of
Ce**, Br~, and u(z,w), v(z,y) are nonlinear functions arising in the course of the
reduction of dimension of this system based on the quasi-steady state assumption
and are defined as

u(z,w) = [2(2z + Kez(c— w))]/{w+ \/w2 + 8XK5[2z + Kez(c — w)]} (10)
v(z,y) = (4z+2%/y)/(2) +1 (11)

Table 2: Minbromator parameter values.

parameter | value parameter | value
E 0.0476 Wy 0.0204
g 9.52 x 10~° || K 0.0893
c 0.0204 Ks 31.2

On the case of coupled cells with the minbromator kinetics we shall illustrate
several spatiotemporal patterns which can arise in two and three cell arrays with-
out a time-delay. Both multiple steady states and oscillations may exist in a single
cell. Coupling may cause not only appearance of additional unsymmetric steady
states (spatial patterns) but also interesting spatiotemporal patterns. If an oscil-
latory state exists in a single cell and the value of the mass transport coefficients
kz (kz is scaled coeflicient of mass exchange) is varied, then for intermediate values
of k. there exist both periodic, quasiperiodic and chaotic patterns. In Fig. 7a,b
are examples of periodic patterns for different values of k.. The dependence of
the ratio of the number of oscillations in the first cell (p) to the number of oscil-
lations in the second cell (g) - p/q - on a parameter (inlet concentraion of y) is
shown in Fig. 7c. We can observe several steps for similar to devil’s staircase-like
dependence. Both quasiperiodic (cf. Fig. 7d,e) and chaotic (cf. Fig. Tf) spa-
tiotemporal patterns exist in a certain parametric range. Chaotic attractors may
in this case arise both via period-doubling route and via the torus breaking (cf.
lobbed Poincare section of the chaotic attractor in Fig. 7f).

Similar periodic, quasiperiodic and chaotic patterns can exist in a cyclic ar-
ray of three coupled cells. An example of a quasiperiodic pattern is depicted in
Fig. 8a,b. We can observe that amplitudes, periods and phases of oscillations in
individual cells vary widely.
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Figure 7: Two coupled cells.

a) Course of the concentration of the variable. [HOBr] (scaled) vs time (scaled),
reactor I : yo = 280, Ky = 0.03, reactor II : yo = 260, Ko = 0.03, k, = 0.001.

b) Course of the concentration of the variable. [HOBr] (scaled) vs time (scaled),
reactor [ : yo = 280, Ko = 0.03, reactor II : yo = 260, Ko = 0.03, k, = 0.01.

c) Dependence of the resonance ratio p/q on the inlet concentration. Values of
parameters : reactor I : Ky = 0.03, yo €< 220;290 >, reactor II., yp = 280,
Ko =0.03, k. = 0.001.

d) Time course of Br~ concentration, 2nd reaction cell. [Br—] (scaled) vs time
(scaled), reactor I : yo = 280, K, = 0.03, reactor II : yo = 280.468, Ky = 0.03,
kr = 0.001.

e) Time course of Br~ concentration in both reaction cells.

f) Poincare section of chaotic attractor arising via torus breaking; values of parame-
ters : [HOBr] (scaled) in 2nd CSTR vs [HOBr]| (scaled) in 1st CSTR (Poincare
Cross Section). Reactor I : y, = 280, Ko, = 0.03, reactor II : Yo = 280.458,
Ky = 0.03, &, = 0.001. :
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Figure 8:

a) Three coupled cells; quasiperiodic time course of oscillations in a single cell;
values of parameters.

b) Time course of oscillations in three cells.

[Br—] (scaled) vs time (scaled), reactor I : yo = 250, Ko = 0.03, k12 = 0.001,
reactor II : yo = 260, Kg = 0.03, kzo3 = 0.001, reactor III : yo = 285, Ky = 0.03,
k.31 = 0.001, where k;; is the coefficient of mass exchange between i-th and j-th
reactor.
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7 Discussion and conclusion

Characteristic spatiotemporal patterns may arise in the discrete arrays of cou-
pled cells both when single cell is in excitable and oscillatory state. As it was il-
lustrated for the case of Oregonator model, single stimulation of an excitatory cell
can cause excitation of a single pulse, finite series of pulses and infinite circulating
series of firings, respectively, in dependence on the amplitude of the stimulations,
time-delay and the intensity of coupling. When cells with a simpler chemical sys-
tem, minimal bromate oscillator in an oscillatory state are coupled, then periodic,
quasiperiodic and chaotic spatiotemporal patterns arise. These spatiotemporal
patterns are in the forms of standing waves and vary in dependence on the inlet
conditions and the coupling strength.

Both types of spatiotemporal patterns can be used under specific conditions for
storing an information contained in the incoming signal (amplitude of stimulation,
a level of the inlet concentration of characteristic component) and respond with
a specific firing or spatiotemporal pattern in dependence on the time-delay or
coupling strenght. Simple arrays of cells can be coupled into layers or cellular
networks and their computational and learning properties can be studied, similarly
as in the case of studies of mass coupled bistable reaction systems, cf. (Hjemfelt
et al 1993).

Intact chemoreceptors structures including various nerve cells have been re-
cently coupled to potentiometer electrodes and used as sensors for specific stimu-
lants, cf. (Belli and Rechnitz 1988). Traces of nerve signal responses, both in
a single and multiple unit case are studied quantitatively. These developments
make 1t now possible to study and interpret the behaviour of discrete arrays of
coupled cells both with relatively well defined chemical mixtures and still only
partly defined chemoreceptor structures in parallel.
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