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Abstract.

We introduce the simulator LindEvol, in which L-systems evolve
under the regime of a genetic algorithm. The L-systems control the
growth of individual plants that inhabit a world they share. The
fitness of an individual depends largely on interaction and competition
with others, hence intrinsic adaptation [Packard, 1989] takes place.
Many emergent phenomena can be observed in LindEvol simulations.
In this paper we focus on the evolution of structures in the population,
which is investigated by distance distribution visualization.

Complex wave patterns are found to emerge in distance
distributions during LindEvol runs. Control experiments show that the
formation of such patterns is not special to the LindEvol fitness
function. The interplay between mutation and selection in a genetic
algorithm can give rise to complex structures in distance distributions
under the regime of various fitness functions.

We also measured the evolutionary activity in LindEvol runs, as
described in [Bedau and Packard, 1992]. Evolutionary steps, which can
readily be observed in the fitness curves, are found to be accompanied
in many cases by the formation of new waves of evolutionary activity,
or by changes in the pattern of the waves.

SUF




1. The LindEvol model.

11 SIMULATION OF PLANT GROWTH. Plant growth takes place in a
two-dimensional world that is organized as a lattice with the topology of
a cylinder surface (1. e. there is a "bottom” and a "ceiling” but no left nor right
border).

A plant consists of an ensemble of contiguous cells. A cell occupies exactly
one square, a square can hold only one cell. A cell can have two states, it 1s
either energy rich or energyless.

The simulation of a generation (a "year”) consists of a couple of "days”.
Each day starts with the simulation of light by "photons”. One photon travels
down each vertical row of lattice sites in each day. I it encounters a cell, it is
absorbed with a probability of 50%, causing the cell to assume the energy rich
state. Energy rich cells can absorb photons too, in this case the photon
disappears without any effect. If the photon is not absorbed it moves to the
square below and the state of the cell remains unchanged. Photons also
disappear if they fall below the bottom of the world.

After the simulation of light the genome-controlled plant growth takes
place. Each energy rich cell may divide into two energyless cells. The genome
consists of a set of rules that determine whether division takes place
depending on the local structure of the plant in the nine cell neighborhood of
the energy-rich cell (see fig. 1). The sites in the nine cell neighborhood of a cell
C are assigned numbers i according to the following scheme:

8 & 7
3 C 4
0 1 2
The local structure is mapped to an eight-bit-number by the function

S(C) = Y dl) * 2

where q(i) := 1 if a cell is located on square i and q(i) := 0 otherwise. 3(C) is
then searched in the even-numbered positions of the genome, beginning on the
left (character positions start with 0). If it is found, the cell C divides and the
last three bits in the following character give the number of the square where
the daughter cell will be located. If that square is already occupied, no
daughter cell is produced and the energy is wasted. If S(C) is not found in an
even-numbered position, no division occurs.

A character in an even-numbered position and the subsequent character
form a “gene”, The first character acts as the regulatory part, and the second
character as the structural part of the gene. If there is more than one gene
referring to the same input state in a genome, the leftmost one is used. The
others are "inactive genes”.

The genetic system used in LindEvol was inspired by Conway’s "game of
life” [Gardner, 1970]. It constitutes a context-sensitive, non-deterministic
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L-system [Rozenberg and Salomaa, 1986]. Each gene is a rule, the regulatory
part being the left side and the structural part being an implicit form of the
night side. As a difference from traditional L-systems, rules in LindEvol work
on two-dimensional cell patterns instead of one-dimensional strings.

Furthermore, the genetic encoding of plant growth patterns was inspired
by biomorpha [Dawkins, 1986]. LindEvol is an attempt to extend this idea by
constructing an artificial environment in which "biomorph” artificial plants
evolve under selective influences that are defined by interactions among each
other rather than by user-defined fitness criteria.

The simulation of plant growth is started with "plants” consisting of one
energyless "germ cell”. These are equidistantly placed on the bottom line of
grid sites. After 30 days have been simulated, the energy-rich cells in each
plant are counted. This number is the fitness value of the genome that
controlled the growth of the plant.

The plants are processed in a random sequence that is changed every day,
in order to avoid positional effects. The cells of a plant are processed in the
order in which they were generated.
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Fig. 1: Control of plant growth by the genome. The activity of the energy-rich cell C is to
be determined. Neighboring cells of the same plant are symbolized by shaded squares,
open squares indicate free positions. The local structure of the plant around an active
cell C is mapped to an 8-bit-number, in which each cell of the local structure
corresponds to one bit (1). This number is now searched from left to right in the
even-numbered positions of the genome (2). It is found in position #4. The subsequent
position #5 contains the code for the action of cell C, bits O through 2 of this character
give the number of the position where the daughter cell is placed (4). The energy-less
daughter cell is placed in the specified puosition, the active cell is also energy-less after
the division (5).

12. THE GENETIC ALGORITHM. The genetic algorithm [Goldberg, 1989]
used in this model operates with strings of 8-bit characters as genomes. The
population size, the selection rate and the mutation rates are control
parameters that are constant during a simulation and have to be specified for
each individual run. The selection rate is the fraction of the population that
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does not survive the selection step. There are three mutation rates, namely the
replacement rate, the insertion rate and the deletion rate (see below). The
population size has been set to 50 in all runs. The steps of the genetic
algorithm are implemented as follows:

1. A start population of random genomes is created.

2. The fitness of each genome is determined using the model of plant
growth described above.

3. Selection: A ranking list of the genomes is created according to the
fitness values determined in step 2. A constant number of surviving
genomes is drawn from the top of the list ~ there is no randomness in
the selection step. Each genome that does not survive is replaced by a
copy of a randomly selected surviving genome. Because genomes are
only being replaced, the population size is constant. In each
replacement process, all surviving genomes are selected with the same
probability.

4. Mutation: The simulation of the mutation of a genome consists of three
steps. In the first step each character of the genome may be replaced by
a randomly selected one. The probability for a replacement to occur per
character and generation is the replacement rate mentioned above. In
the next step, insertions take place. Insertions can occur between
contiguous characters in the genome or at the ends of the genome.
Insertions are modeled by inserting two randomly selected characters.
The probability per site and per generation for an insertion to occur is
the insertion rate. In the last step, deletions take place. They are
modeled by removing two adjacent characters from the genome. All
pairs of characters in the genome are sites where deletions can occur.
The deletion rate is the probability per site and generation for a
deletion to occur.

5. Repeat steps 2, 3 and 4 until some condition for finishing the run is
fulfilled.

We chose to insert / delete two characters per event because we expected
this to lead to a higher speed of evolution of high fitness values. Insertions or
deletions of ome character would cause frameshifts that affect the whole
genome downstream of the site of the event, whereas the insertion or deletion
of two characters would have only local effects.

The conception of the LindEvol model matches the outlines given in
[Wilson, 1989] in many respects. Because space for growth and light intensity
are modelled by the co-evolving plants themselves, adaptation is largely
intrinsic [Packard, 1989] in LindEvol.
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2. Analysis tools.

In order to get further insight into the processes in LindEvol at the level
of population structures, we designed a distance distribution analysis system.
A distance distribution is the distribution of values in the distance matrix of a
population. Distance distributions are plotted for edit distances and for
phylogenetic distances. The phylogenetic distance between two individuals is
the number of generations that have passed since their last common ancestor
existed. The phylogenetic distance between two individuals that originated
from different ancestors in the initial population is undefined.

To calculate phylogenetic distance distributions, the phylogenetic history
of LindEvol is recorded. This tree is structured into clusters. By a cluster of
depth n we denote a set of individuals that are descendants from a common
ancestor n generations ago. The size of a cluster is the number of individuals
in that cluster.

Time series of distance distributions form a surface over the time by
distance plane. This landscape is visualized by plotting points with values
above a given threshold in black and all others in white on a time by distance
diagram. The threshold value is 16 for the edit distance distributions and 64
for the phylogenetic distance distributions.

Gene usage is monitored in the LindEvol runs as defined in [Bedau and
Packard, 1992]. Because LindEvol genomes are lookup tables like the genomes
of the "strategic bugs” developed by Bedau and Packard, the evolutionary
activity analysis can be applied to LindEvol. Minor extensions have been
added to deal with insertion and deletion events: At insertions, a new usage
counter is created for the newly inserted gene, and initially set to zero. Upon
deletions, the usage counter of the deleted gene is removed. The usage
distribution is sampled every generation and plotted as described for distance
distributions with a threshold value of 1.

From the gene usage distributions we calculated the evolutionary activity
at u, = 100. Not all waves in the usage distributions show up as peaks in the
evolutionary activity curve because in LindEvol genes can be used more than
once in a generation. Usage peaks caused by such genes can grow larger than
the u, value without exactly assuming u,. Then, the corresponding wave
crosses u, without leaving a peak in the evolutionary activity curve.

All three distribution series exhibit marked waves. By a wave we mean
a peak that is present in a succession of distributions. Typically the peak’s
location moves a bit from one distribution to the next one. The rate at which
the peak moves is called the slope of the wave. The length of a succession in
which a peak is present is called the length of the wave. By the height of a
wave we mean the height of the peaks that form it, and likewise, the
sharpness of a wave is the sharpness of the pealks that form that wave.
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3. Materials and methods.

All programming work was done on an Atari ST computer in GFA basic
(available from Richter, Gevelsberg, FRG). A few procedures were
re-programmed in 68000 assembly language. Simulations were run on an Atari
TT. Diagrams were printed on a Kyocera F-1200 laser printer, using the
built-in Prescribe printer language.

4. Results and discussion.

41. ORGANIZATION OF THE SIMULATION RUNS. Runs were performed
with low mutation rates (replacement rate = 0.003, insertion rate and deletion
rate = 0.001) and with high mutation rates (replacement rate = 0.03, insertion
rate and deletion rate = 0.01). With each set of mutation rates, one run was
done with moderate selection (05) and one with strong selection (0.8). Also, a
control with no selection was done at each set of mutation rates. All runs
were done with populations of 50 individuals, populations were initialized

with randomly assembled genomes of 20 genes length. The runs are given the
labels:

selection rate low mutation rates high mutation rates
0.0 run 1 run 4
05 run 2 run 5
0.8 run 3 run 6

As an additional control, runs were done with randomized fitness values.
In these, plant growth is simulated, but the fitness values that are assigned to
the genomes are not calculated based on the simulation. Instead, random
fitness values between 0 and 999 are used. In these control rums, selection
takes place in the sense that in each generation a fraction of the population is
discarded and some surviving genomes are replicated, but the fitness function
upon which this selection is based is the built—in random function of the GFA
basic language rather than the amount of energy absorbed by the plant.
Random selection controls have been run at low mutation rates with

moderate selection (run 7) and at high mutation rates with strong selection
(run 8).

42. EVOLUTION OF FITNESS VALUES. In the control experiments without
selection (runs 1 and 4), no significant evolution towards higher average
fitness values is observed. In run 4, elevated maximal fitness values become
more frequent in later generations. This is caused by the growth of average
genome length (see section 4.3), within a certain range of lengths, longer
random genomes have higher fitness values on the average.

A significant evolution towards higher fitness values is observed in all
runs with selection. In the initial phase, the maximal fitness typically has a
sharp ceiling that often displays several steps upward. In this phase, plants




exhibit finite growth, i.e. they produce a finite maximal number of cells. At the
end of a year, all cells of such a plant can be saturated with energy, giving
rise to a fitness of the ceiling value. The genetic system of LindEvol also
allows infinite growth, in which plants continue to produce cells as they
collect energy infinitely. When infinite growth is evolved, the maximal fitness
shows no sharp ceiling value anymore, it starts oscillating around some mean
value that is in turn subject to further evolution.

Fig. 2 gives an impression of the growth shapes that evolve during
LindEvol runs. A more detailed discussion of LindEvol phenotypes will be
published elsewhere.
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Figure 2: Sample plants and genome. (a) shows a part of a LindEvol world at the end of
the 30001th year. Cells are shown as squares. Cells from different plants have
different symbols. Closed boxes with white symbols are energy rich cells, open boxes
with black symbols are energyless cells,

In (b}, a plant also seen in (a) is highlighted. (c) shows the genome of the plant
highlighted in (b). Closed boxes are energy rich cells of the highlighted plant, gray boxes
are energyless cells of the highlighted plant, and open boxes are cells from other plants.
In (c), the rule table is graphically displayed. At the left side of the individual rules, the
black center box is the active cell that divides if its local structure matches the pattern
of the surrounding open boxes. At the right side of a rule, the pasition of the daughter
cell produced by the division is shown. A darker daughter cell indicates that its position
is already occupied in the left side, and that therefore expression of that gene inevitably
wastes energy.
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Evolutionary steps and gradual changes can both be observed in the
fitness values, eg. in run 2, a very marked step occurred just before generation
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Figure 3: run 1, low mutation rates (0.003, 0.001, 0.001), no selection
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800, and a slight, gradual increase of maximal fitness values between
generations 2000 and 2100.

In run 3, instances of evolution towards and away from cooperativity can
be seen. Near generation 1500, the maximal fitness values increase slightly.
This is accompanied by a decrease of average fitness values. Here, evolution
has favored genomes that can produce high fitness plants at the cost of
abandoning a strategy of avoiding colliding growth in order to avoid the
waste of energy associated with collisions. Interestingly, the strategy that
evolved near generation 1500 is not permanently favored over more
cooperative strategies with lower maximal fitness values. Cooperativity
returns around generation 2100, causing the patterns in the fitness curves to
become similar to what they were like before generation 1500.

4.3. EVOLUTION OF GENOME LENGTHS. In the controls with no selection,
a tandom diversification of genome lengths and an increase of average
genome length is observed. The latter is due to the fact that there are two
more potential insertion sites than there are deletion sites in a genome.
Random diversification is not observed when selection is active, regardless
of the fitness function involved. Genome lengths increase during most runs,
but this is not always the case, as seen in run 2. Increasing genome length may
also result from random drift, as shown by the results of runs 7 and &, so one
should be careful when drawing conclusions from increasing genome length.

44. CLUSTER NUMBERS AND SIZES. The curves displaying the number of
clusters and the size of the largest cluster were expected to indicate
evolutionary steps. Once a significantly improved mutant appeared, it should
spread through the whole population rather quickly. The cluster originating
from that mutant should become exceptionally large, and the number of
clusters should decrease during such a takeover. However, no evolutionary
step has been found to be accompanied by such a process. The number of
clusters and the size of the largest cluster seem to oscillate randomly,
unaffected by evolutionary steps or other events. The characteristics curves of
the number of clusters and the size of the largest cluster in run 2 and run 6
show no significant difference from those in the control runs with random
fitness values performed with the same set of control parameters, runs 7 and
8, respectively.

45. DISTANCE DISTRIBUTIONS. In the control runs with no selection, the
edit distance distributions have only one very high peak around 40. This peak
broadens in the course of the simulations. This reflects the diversification of
genome lengths in the population, which is due to insertions and deletions.

In all runs with selection, the wave pattern in the phylogenetic distance
distribution exhibits a close relation to the pattern in the edit distance
distribution. However, differences are seen in the characteristics of the waves.
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Firstly, the waves in the edit distance distributions are fuzzy, whereas the
waves in the distance distributions are sharp. Secondly, the waves in the edit
distance distributions are bent, their slope typically decreases as they rise
upwards, whereas the waves in the phylogenetic distance distributions all
travel upwards at the same, constant speed.

Waves in both distance distributions are caused by diverging clusters in
the population. Because the number of generations between the current
generation and the generation in which members of the diverging clusters
departed from a common ancestor increases by one each generation, the
corresponding wave in the phylogenetic distance distributions travels upwards
at this rate constantly until one of the clusters disappears.

As the clusters diverge, the edit distances increase too, but not in a precise,
deterministic way. The edit distances between individuals of the two diverging
clusters are distributed around an expectation value, which leads to the fuzzy
appearance of the waves. This expectation value increases monotonically each
generation. [t increases more slowly if the mean distance between two clusters
already 1s already larger because the probability that a character which two
strings have in common is affected by a mutation is greater the more common
characters the strings share. Thus, the rate at which the mean distance
between two clusters increases slows down as the clusters diverge,
asymptotically approaching a limit given by the genome lengths.

However, both the increase rate and the limit can be influenced by
selectional pressures. Therefore, the waves in the edit distance distributions do
not grow with a more or less smoothly decreasing rate, but sometimes
increases of the wave slope are observed, such as in run 2 near generation 340.
In the control runs with randomized fitness values, such events do not occur
because there are no directed selective pressures.

A genome can take over the whole population in 6 generations when the
selection rate is 0.5, and in as few as 3 generations when the selection rate is
0.8. Such an event would show up as a distance distribution in which the
highest peak is at 6 or 3 respectively. However, such distributions are never
found in any of the runs 2, 3, 5 and 6 except at the start of the runs where the
maximal phylogenetic distance is limited by the number of generations that
have passed. Evolution in LindEvol is not a succession of simple takeovers of
mutants that are superior to their ancestors. The dynamics of evolutionary
changes are more complex in LindEvol, as we have already mentioned in the
discussion of the cluster number and size curves.

One reason why genomes do not spread at the maximal rates mentioned
above is the non—deterministic nature of the fitness function. However, this
alone cannot account for the lengths of the waves seen in the phylogenetic
distance distributions. In run 2, the longest waves in the phylogenetic distance
distributions are even longer than those in the control, run 7, which has been
performed with the same set of control parameters. This indicates that the
LindEvol fitness function does not drive the system towards uniformity any
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more strongly than the random fitness function, which cannot be expected to
select for uniformity at all. The LindEvol fitness function actually stabilizes
diversity in those phases where the long waves in the phylogenetic distance
distributions are observed.

4.6. GENE USAGE AND EVOLUTIONARY ACTIVITY. Looking at the usage
distribution diagrams, four types of waves can be distinguished:

1. Waves with slope 1. In run 2, such a wave originates near generation 0,
another one near generation 1300. These are caused by the germ cell genes
and other genes which are used exactly once per generation. If the germ cell
gene is not used, this is lethal to the genome. Therefore, the germ cell gene
waves are high and sharp.

2. Steep waves, ie. waves with a slope much greater than one. These
waves arise if a gene is used several times in a generation. Typically, such
multiple usage of genes occurs in infinite growth. Because the number of times
such a gene is used depends on photon absorption, which is non—deterministic,
and it is not invariably lethal if such a gene is not used the maximal number
of times, these waves have a more fuzzy shape. When an evolutionary step to
infinite growth occurs, the number of times a gene is used may switch from
one to many times, and the corresponding wave switches from type 1 to type
2. A pronounced instance of such an event can be seen in run 3 near
generation 240. '

3. Horizontal waves. These are caused by once active genes that became
inactive, but were not lost from the genomes. In most cases, they finally are
lost after some time, but in some cases they are activated again, causing the
wave to start rising upwards again. Such an instance can bee seen in run 2
near generation 2430.

4. Complex waves. These have a varying slope and a branched structure.
In run 2, such waves originate near generations 780 and 2130.

In the controls with no selection, surprisingly many evolutionary activity
waves are seen. However, none of them is a complex wave. The evolutionary
activity curve shows that none of the waves are significantly high. The
formation of high waves is only possible if genomes, and hence usage counters,
are replicated, which is not the case in runs with no selection.

The control runs were expected to reveal what amount of usage
accurnulates without any directed selection, as suggested by Mark Bedau
[Bedau, 1992]. However, it was found that usage levels do not remain below
some rather low threshold in any of the controls, but instead, distinct waves
that travel upward are observed in all control experiments.

As cells are produced during plant growth, new local cell structures arise
in the plant, which in turn activate new genes. This way, the pattern of gene
usage is controlled by the genome itself to a large extent. Therefore,
evolutionary activity waves are observed even in the control runs. If a genome
is amplified, whether by random drift or by directed selection, its set of usage
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counters is amplified in this process, and the corresponding waves become
higher as a result. The waves end when the genes that give rise to them
disappear from the population, which can be due to competition, due to
random drift or due to mutations. The latter two factors are much stronger in
run 8 than they are in run 7, therefore only a few, short waves are seen in the
usage distribution diagram of run 8.

In runs 2, 3, 5 and 6, the evolutionary activity waves are much more
frequent than in the controls with random fitness values, and much higher
than in the controls with no selection. Complex waves are only seen in these
runs. They are most prominent in the runs with low mutation rates.

In run 3, a complex wave originates near generation 1820. This complex
wave Is especially interesting because its branching near generation 2020
appears to be correlated to the long wave that is seen in both distance
distributions. It is assumed that the branch of the wave was caused by
different per generation usage frequencies in individuals of the diverging
clusters. However, other branchings of complex waves do not appear to be
closely linked to waves in the distance distributions. More research will be
necessary to improve our understanding of complex waves.

In runs 2 and 3, the activity waves caused by germ cell genes are typically
very long. This indicates that under a regime of low mutation rates, a germ
cell gene becomes strongly stabilized once it appears, and successful plant
growth patterns evolve based on this germ cell gene. But the spreading of a
new germ cell gene is not completely impossible with low mutation rates. In
both runs, corresponding activity waves originate in a later phase. However, it
cannot be excluded that these are caused by conservative mutations in the
right side of the germ cell gene, i e. mutations that leave the least three bits
of the right side, which are the only relevant ones, unchanged. Because a
conservative mutation is completely neutral, it is possible that such a mutant
takes over the whole population by random drift.

In the runs with high mutation rates, germ cell genes are changed much
more frequently. Here, competition between plants with different germ cells
can take place. Especially in run 5, it is regularly seen that horizontal waves
start rising up again, indicating that a gene temporarily became inactive and
was re—activated again. This strongly suggests that genomes evolve to encode
alternative growth patterns based on alternative germ cell genes or other key
genes, and that evolution sometimes shifts between these alternative patterns.

5. Conclusions and outlook.

In LindEvol, the fitness landscape is shaped by complex interactions
among the co-evolving agents. These interactions give rise to a unique,
unpredictable history of evolution in each run. We have never observed a
LindEvol remaining converged in an optimum of the fitness function. It seems
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that the effects which evolution towards an optimum has on the intrinsically
modelled fitness landscape always create new optima and open up new
pathways for evolution. Hence LindEvol evolution can be considered to be
open-ended. Evolutionary steps and gradual phyletic changes can be observed.
Especially with moderate selection, cooperation between plants can emerge.
All these things are commonly considered to be landmarks of biological
evolution.

Evolutionary steps are remarkably complex processes in LindEvol. They
are not caused by superior mutants that simply outcompete and replace the
previous community, as shown by the finding that evolutionary steps are not
accompanied by peaks in the largest cluster curve and by minima in the
number of clusters curve. Further investigations on this issue may be
interesting, as they may deepen our understanding of the way genetic
algorithms work.

Breakdowns of waves in distance distributions do accompany evolutionary
steps, but these breakdowns are not noticeably different from others that are
not accompanied by any perceivable evolutionary step. Evolution in LindEvol,
does not proceed via simple replacements of individuals and species by
improved mutants.

It is one of the most fascinating properties of biological evolution that it
gives tise to a vast number of species, not only to just one species. This means
that evolution does not proceed by replacing populations and species by
improved mutants, they coexist and co-evolve during long periods. The
distance distributions clearly show that clusters coexist for extended periods,
indicating that co-evolution of several species is successfully modeled by
LindEvol.

The phylogenetic distance and the edit distance are strongly correlated in
LindEvol due to the way mutation is implemented. However, this correlation
is disturbed in some cases by selective influences. It is hoped that further
investigations of such processes will lead to new insights about the
mechanisms underlying the "molecular clock”.
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