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Abstract

If evolution is the genetic change of a population due to a given selec-
tion force, then coevolution should be degned as the production and ap-
plication of recursively defined selection forces in a semi-closed network.
Whereas it is not difficult to model the first (in terms of optimization
and adaptation), the second poses a paradox. This paradox has to do
with a ”complexity bottleneck” experienced when formulating the prob-
lem: in a system of limited complexity (such as in the starting phase of
the evolution), a system with higher complexity should be anticipated,
in order to allow for a simulation of the new selection forces and the new
adaptations.

We suggest a solution to this problem, based on the new idea of a
?distributed code system”. Distributed code systems can be conceived
as populations of computers where the coding scheme of a computation
(that is, the ”"reading frame” of a given program) is computed by other
machines, on a mutual basis. This makes it possible for the system to
introduce new interactions automatically, without having to pre-specify
them in an eacompassing initial definition. Distribute coge systems
offer, therefore, 2 mechanism for the dynamic production of information.
Realizations in terms of computer models are discussed.

Life’s perhaps most striking capability is its evolvability. It is no wonder the
working definitions of life often proceed by defining evolution first and deriving
the concept of life from that (Maynard Smith 1975, Dawkins 1986, Ray 1992).
Consequently, " Artificial Evolution” should be one of the most important topics in
AL. In this paper we deal with a fundamental question that emerg;'es next: By what
methods can we implement evolutionary processes in a computer?

I. Evolutionary Programming

Evolutionary programming is the idea of mimicking evolutionary development
in order to obtain programs in the cheap way. The most recent major work being
that of Koza (1992), this problem has been of concern for a long time. Not counting
early philosophical discussions, the true story begins, as does so much else, with
John von Neumann (1966). He was the first to ask in the language of mathematics,
whether computers can evolve. He pointed out that the question cannot be solved
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at once in this broad generality. He suggested to consider better questions like: Can
a series of machines be produced automatically, such that all elements in the series
differ from each other, from a behavioral point of view? Or, alternatively, can the
successive machines produced in such a series show better and better performance in
a task environment, according to some suitable criterion? Von Neumann was able
to answer these questions to the affirmative, by constructing and analysing what
is today known as the "von Neumann self-reproducing cellular automaton” (Burks
1971). Of course, much depends here on the chosen criterion for performance. For
instance, J. Myhill (1971) has been able to show only much after Neumann’s death
that program evolution is possible under such mathematically plausible performance
measures, as the one expressing the number of theorems a given program as a
formal system can prove. 1’])?rom the algorithmic point of view, these works generated
significant interest. A distinct approach, adopted in the recent GA industry and
originated in works like (Holland 1975, Eigen 1971, Edelman 1987) is based on the
population genetic paradigm of evolution conceived as optimization (an idea that
goes back to Wright’s concept of adaptive landscape). This approach too defines
an entire field of study of its own. And above all, there is Tierra (Ray 1992), an
important new version of Vyssotsky's "Darwin”, a Bell Lab fun product in the early
sixties (AlephNull 1972), or of Core War games, especially of the variants capable
of mutation (Daiber 1988), a principle increasingly utilized in the development of
real-life computer viruses (McAfee and Haynes 1992).

These origins define the current enterprise of evolutionary modeling as one
clearly related to three categories: direct computational (i.e. instructional or ortho-
evolutionary (like Myhill’s systems), direct selectional (lilke GAs), or mixed selection-
al-computational (such as Tierra, where programs both perform actions and are sub-
jects of selection). With these developments at hand, we have examples for different
types of systems that show characteristics of evolution.

At the same time, there exist a few warnings. Despite all this success, the oper-
ating principles of evolution may cousiderably differ from those of, say, "traditonally
conceived computing”. Evolvability/programmability tradeoffs identified by Conrad
(1985), information-theoretic considerations of Cariani (1989) or problems of defin-
ability theory (Kampis 1988, 1991) indicate that some of the most basic issues will
require further study.

II. Evolution and Coevolution

We shall examine the selectional or selectional-computational approaches more
closely, in order to point out a difficulty, and to offer a solution to 1t. Let us first
specify a little more concretely, what should be meant under evolutionary modeling
or evolutionary programming.

Darwinian evolution has two main components: a selective force and a variable
population. Evolution occurs as an interaction of the two. It is known since long ago
that this interaction can be bidirectional: that is, typically, not only populations,
but also selection constraints are affected by evolutionary change. Hence evolution
is, to a great extent, its own product. Tlis is true in a double sense. Organisms
play a role in

- the production of the environment (Van Valen 1973, Stenseth and Maynard

Smith 1984): for a given organism, the relevant environment mostly consists

of other organisms (or rather, of other species), which in turn are products of

earlier evolution in their earlier environment.

- the selection of the environment (Lewontin 1983): of a given encompassing en-
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vironment, the genetically determined life strategies of organisms select the rel-
evant part; for instance, genes can determine whether their own relevant envi-
ronment is in in the air, on the ground, or in the soil.

Any evolutionary event potentially involves the change of these factors. Conse-
quently, evolution consists of two threads that go hand in hand: we have change
of populational composition (or adaptation), and change of selective force (or self-
organization)i For simplicity, it is convenient now (but also raises well-known un-
solved problems) to think of the first as microevolution and of the second as macro-
evolution.

The issue on which we would like to focus arises when we understand that
a dproper modelling of evolution is not only a modelling of the origin of specific
adaptations as consequences of selection forces, but also qu the modelling of the origin
and production of selectional forces as consequences of adaptations (or whatever).
Let us hasten to note that this complicated aspect of evolution is vastly neglected in
the computational literature, and is sporadic in the biological one. It is hard to find
any worlk at all with a direct reference to this (among the few exceptions are Rosen
1991, Kampis 1991, Goertzel 1992, or — in population ecology — Roughgarden
1979). And, even worse than that, there is a serious new methodological difficulty
involved here, waiting to be discovered.

IT1. The Coevolutionary Trouble

What we said so far depicts coevolution as a bootstrapping process at the ecolog-
ical level. To analyze the situation, it is instructive to think of the adaptive part of
evolution as some kind of problem solving in a given space. Obviously, the first step
should be the setting up of a problem. But, by the hypothesis of coevolution, this

roblem must be a product of the previous solution which then corresponds to a
?ormer problem, and so on; ultimately, it has to be all generated by the first problem
and the first solution, which are, by the second hypot%lesis that this is an evolution
process, extremely simple compared to the end result. How is this possiblet?

Anybody with even a minimal skill in mathematical modelling will no doubt
share tﬁe intuition that a solution can never be more complex than the problem it
solves. In fact if the solution "fits” to the problem, they behave like a key and a lock,
so their relationship is closest to that of an equivalence, if anything. This intuition
can be made quite precise mathematically, by using algorithmic complexity theory
(Li and Vitanyi 1990, Lofgren 1987, Kampis 1991). In these terms, in order for the
solution complexity to change, the task complexity must also change; in particular,
for the former to become more complex, the latter has to become more complex. No
short-cuts are permitted, no royal road. The perhaps most elegant way of putting
these sorts of questions is by the formulation suggested by Chaitin (1975): Can you
prove a 100-pound theorem in a 10-pound axiom system? (Housewife version: Can

you buy 100 dollars for 10 dollars?). Put this way, we all kmow the answer to be
negative.

1 Closely related are the concepts of "recursive evolution” and "deuteroadaptation” by Réssler
(1984) and Conrad (1983).

i To make our motivation quite clear: in the context of coevolution we speak of using nothing
but a seed to let a whole evolutionary process construct itself. A natural but somewhat distant
possibility for experiencing such a process would be colonizing a virgin planet. Or, one may
think, by analogy, of the suggestions of A.C. Clarke’s Rendezvous with Rama (1973), where (in my
reading) the point was that an initial triggering event, in this case the entering of the ship, could
launch an autonomous development that starts from virtually nothing. Of course, that is precisely
what life did on Earth.
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Besides such mathematical obstacles, but perhaps not quite independently from
them, hidden in our problem there is a philosophical one: can an effect be "bigger”
than the causet?

We conclude that there is a well-identifyable complezity bottleneck in the mod-
elling of a genuine coevolutionary process. If a highly evolved system contains more
information than the original "primordial soup”, the question 1s, where did this in-
formation come from, in the first place? In the realm of traditional algorithms no
mechanism for ”bootstrapping” is permitted; we have to pay the full prize (in cash
advance payment) for everything we need. This just won’t produce money. Formu-
lated as a "coevolution paradox”: evolution in a closed system is not possible, for
such systems cannot generate new and more complex tasks, only new consequences
of the old ones. (It’s no accident that this paradox is not unlike some problems
familiar from AI research and cognitive science.)

IV. From Selective to Distributed Code Systems

Whereas the above reasoning seems to be fundamentally correct, and it poses a
serious challenge to all evolutionary computer models, nothing forces us to stop here,
and to accept it as a merely negative result. Indeed we propose here an approach
which circumvents this problem in a sense, if not by means of some brute force
attempt such as the suggestion of writing " cleverer” programs would be, because that
is precisely what does not seem to be possible, but by recursively introducing new
functional information in the evolving system. Thereby we can get new evolqution
potential. And the trick is that this can be done automatically, though not quite
algorithmically — not in the usual restricted sense at least.

Let us give out the idea first. Algorithms are conceived, ultimately, as recursive
functions. These are, in turn, made equivalent to programs com]ljletely definable as
syntactic strings. So after all, classical programming is nothing but typography. A
precondition to this simplification procedure is the criterion that programs ofy the
same universe of discourse must all have the same semantics. What we suggest is
simply to manipulate exactly this aspect of algorithms, in order to achieve higher
flexibility. But let us proceed sequentially. We shall first spend some time with
semi-formal questions tlijlat make the road for the result we seek to formulate.

IV.1. ?Central” Encodings

Of importance is the fact that a selective system such as those based on P(t) =
{z1(t),za(t),...,zn(t)} where P is a population of structures z; that are candidate
solutions to an objective function f always operate by means of a fixed "central
encoding”.

What does that mean? By a central encoding we mean that the complete
code is available, in the same unchanged form, at every one point of the system.
More precisely, consider now "artificial organisms” z; as instances of program strings
P1,P2.-Pis - Pa (€ssentially in the same sense as suggested by Stahl and Goheen
(1963), or Laing (1989), or as found in the Tierra-like systems). Consider further-
more a selection situation where these programs are executed in order to achieve a
goal. We choose a graphical representation following Smith (1969) and Kampis and

Csényi (1987):

t Many people will recognize this wording to be related to the infamous question: ”Can God
create a rock so heavy that even he himself cannot lift it?” Unlike this one, where paradox arises
as a consequence of verbal ill-statedness. the original question seems to permit a solution.
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Figure 1.
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The illustration shows a system where program execution produces data, which will
be externally evaluated. This leads to the formation of new programs (by means
of mutations of otherwise. Such details don’t make a difference: nor does it matter
whether we allow the computation of f(p;) to be part of a further embeddig program
not depicted here.). Here the program and the data can be thought of as strings on

a tape, and the machine as a processor unit that inspects and processes exactly one
square of this tape in every time step.

The graphical representation makes it explicit that the process depends on two
distinct parts (just as in our discussion of Darwinian evolution!): on the program p;
and on the interpreting machine m. It is natural to require m to be an instance of a
Universal Computer (i.e. any machine for which Turing’s simulation result holds),

but that still leaves plenty of freedom for this machine’s actual choice. In particular,
we have yet to fix a translation table between words of the program symbols and
those of the semantic primitives of m. That is where the encoding enters. For a
concrete example this translation may look somehow like this:

p svntax m _svitax m_semantics
0101 abab write 1 to the tape and stay where you are
1100 gfea write 0 to the tape and move right

etc., in which case the code would be C = {01 = ab,11 = gf,00 = ca,...}, and so on,
and the machine would always have to read four blocks before turning to execution.

Fixation of such a translation rule (which in the simplest case can be an identity
mapping and may thus mislead people into thinking it’s not there) is necessary in
order to have a definite meaning for the pi-s. So, the operation of defining an
encoding C must be a prerequisite for obtaining a well-defined expression f(p;) in
the end. This amounts to expressing the "phenotype” (that is, the performance)
as a function of the "genotype” (the program)i: that is, to have f(p:) = A(C(p;)) for
some fixed function 4. (In the limiting case when C is an identity, k= 7.)

1V.2. Encodings and Coevolution

Having spent some time with the development of the above concepts, it can be
readily seen that the idea of central encoding is more general than just a way of
looking at Turing Machines. Such encodings have unexpected side effects. Con-
sider, %or instance, the quite natural idea to extend Figure 1. towards a system
capable of coevolution by allowing the p;-s to produce new programs p; with new
environmental functions f; directly coupled to them. In other words, we can allow
the environmental selection function to become simply part of a program:

T An interesting biological question concerning the nature of ontogenetic transformation is im-
plicit at this point.




Figure 2.

Is this now a good model for a coevolution process? Not quite. What this amounts
to is to try to change the evolutionary tasks upon execution, while keeping the
encodins (i.e. using the same machine as before). Now here instead of f we get a
set f;, and that may allow for a more complicated behaviour indeed, but at a closer
look, this solves nothing. By the assumption of invariant encoding, this amounts to
having a set of preassigned selection problems of exactly the same type as earlier.
This is unavoidable as the encoding must relate the f-s to certain e priori physical
actions. We could have as well started with this {f;} instead of f in Figure 1.

In short, in such a system no self-selecting property can be expected to emerge.
The lesson is that is a system with a centralized code one can at most transform a
simple GA-style function optimizer into a path-dependent multiple criteria optimizer
(for it can depend on the given realization which tasks are on and which are off),
but that is not coevolution yet. In other words, as long as a machine keeps working
in one and the same way, it can’t help but work on pre-defined and pre- encoded
(and anticipated) problemst. If we want to solve the coevolution paradox, we have

to solve the problem of the brittleness of computers. The same old problem in new
clothes.

IV.3. Distributed Code Systems

And finally, we come to the idea for which we have been preparing all along. It
depends on a method by which we can exploit about as much of the possibility of
"tinkering” with the definitions of computations as possible.

We suggest to use programs for computing new encodings and machines for
interpreting programs. When interpreted differently, one and the same ”program”
(more precisely, the same program string) can behave like several different programs.
The idea is to let programs interact so that the one defines the machine (or rather the
encoding) on which the other runs, and so on, on a mutualistic basis: all information
comes from within the system process.

As a result, the code will be distributed over the evolving programs, so that at no
point will we have exactly the same information, and at no point is this information
complete. Only the population of programs as a whole determines what encodings

are valid for the system, and even that can change as it is relative to the current
state.

How this is achieved is very simple (Figure 3.).

1 This same conclusion can be reached by various trains of thought.
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Figure 3.

Let p; € S35 = {0,1}i = 1,...,n. The Figure shows an example where n = 2 and
p1 = p2. That is, here we have one program with two machines m; and mo. Obviously,
then, mj op = i(.),m2 0 p = p;(.),i # j, where ¢; is the i-th partial recursive function
in an arbitrary Gdel-numbering and o is the sign for composition. What can now
turn this system into a Distributed Code System is a relationship

m; = H(m2 Op)
mq = H(m; op).

The definition can be easily extended to arbitrarily many m-s and p- s, the only
criterion being that all indices should occur exactly once at the left hand side and
at the right hand side of the equality sign, respectively. (More general definitions
that use H-s with several arguments, or ones that allow function H to be modulated
by the computations could also be entertained. Such constructs are necessary in
order to be able to extend the pool of programs, i.e. to let » increase without having
to redesign the system completely. However, we do not discuss these technicalities
here.)

'The suggested scheme realizes an unusual coupling between hardware and soft-
ware, two worlds so neatly separated in systems with a central code. (We can, of
course, revert the argument: because the hardware and the software is so well sepa-
rated in the usual machines, one can introduce a central code that covers all pieces
of program in them.) In our scheme, new progams help build new machinesi. In
this way, they can in principle offer the kind of flexibility that is needed in order to
produce new tasks. In fact, when using a new method of reading, every task will
appear as genuinely new,

V. Distributed Code Systems versus Computations and
Molecular Systems

By its definition the notion of a distributed code system goes beyond that of
computation understood in the usual sense. As emphasized repeatedly, every defini-
tion of computation must start with laying down a gasic syntax and semantics, none
of which can be changed afterwards. In this sense, our result means that evolution
is very different from computing.

On the other hand, a distributed code system can be easily simulated on an
ordinary computer. All we need to that is an embeddig program that lets us sim-
ulate machines together with their programs, and then, of course, to simulate new
machines with new programs, and so on.

This can be imagined somewhat in the style of von Neumann’s famous self- re-
producing cellular automaton. There the point was to achieve self- reproduction so

T Emulation can be a key word here. In a sense, it is possible to build new computer hardware
entirely from within software, that is, without having to take physical components apart.
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that not only the target configuration but also the machine which performed the re-
production was reproduced. Here the situation is quite analogous, with the exception
that not always the same machine is produced over and over again. Otherwise, the
parallel is complete: in the coevolutionary context, not only new programs should be
produced but also new machines that interpret old programs.

A natural counterpart of an abstract distributed code system is a macromolec-
ular system. Macromolecular reactions produce, in general, new macromolecules.
These in turn can often make use of hidden or yet undefined properties of their
fellow molecules. The information content of these molecules is actively manipu-
lated by the system of which they are part. There is a correspondance between this
mechanism and the formal structure we have been discussing above. Examples that
utilize related mechanisms range from shifting reading frames (in the sense used in
molecular evolution) to function change and to Jacob's "evolutionary tinkering”.
Discussion of these applications is beyond the scope of this paper, however.

VI. Analysis of Tierra-like Systems and the Use of
Distributed Code Systems

In this final section we use Tierra as a paradigmatic example to illustrate some
oints of this paper. The amazing variety of complex forms that can evolve in
jerra-like systems is bound to important limitations. It is now easy to formulate

what they are.

In the current versions of the model, the digital organisms all compete for
the same room, therefore, ecologically speaking, they belong to the same species
(whereas teal elephants and mice are not in competition as they have different
needs). The various behavioural roles (parasitism, coalitions, etc.) developed by
members of the evolving abstract population resemble more to genetic polimor-
phisms in an ESS-like intraspecies situation or to adaptations of social structure
than to evolution on the large scale.

More importantly, that there is just one room means that there is just one
task, which is essentially invariant and is externally given. This task cannot be
modulated by the evolution process. That nevertheless various strategies exist in
the system is a consequence of the emergence of subgoals rather than of new domains
for development. This can be best seen on the fact that in these systems there are
no producers, only consumersi. By producers we do not necessarily mean producers-
in-the-ecological-sense (which are, ultimately, the plants). Plants produce energy-
rich substances other organisms can consume. This is an important phenomenon.
However, we can also speak of ” Producers” with respect to the role species play
in niche-theory. In this sense, a "producer” is one that makes the opening or the
occupation of a new niche possible; in our present terminology, it is one that defines
a new task field.

Without this kind of productivity, one of the most important biological mech-
anisms that makes the emergence of multi-species structure possible cannot be in-
corporated. This mechanism can be called "competition avoidance”. That not ev-
erybody must compete with evelgfbody else 11e1}35 generate evolutionary complexity
by letting goups of variants to differ from each other, without being punished or
rewarded. %:hat is why the generation of new tasks is important. Incorporation of
a mechanism like that of distributed code systems would therefore seem to be an
essential requirement for the takeoff of even an abstract evolution process.

+ The idea in this form was first formulated in a discussion of the author with E. Minch, Stanford.
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