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Abstract

We construct a network of open, bistable resction systems coupled by mass transfer. The
transfer rates are determined by a Hebb type learning rule. The programmable network can
store patterns consisting of high and low concentrations in each bistable system. The network
is & parallel computer; it recognizes patterns similar, but not necessu'-ily identical, to stored
patterns. Bistability and mess transfer are present in biological systems, and as shown here,

provide 2 possible basis for the processing of information.

All living beings must process information to one extent or another. This processing must be
primarily of chemical origin; be it by macroscopic dissipative processes such as biochemical switches
or transport of ions across a membrane, or by molecular properties, such as different conformations
of a protein. The maintenance of stationary states far from equilibrium requires diaai;-tation {entropy
production). The choice of macroscopic dissipative processes for the construction of computational
devices of possible interest in biological studies needs substantiation. One argument in its favor is
the consumption of ATP used to drive kinetic processes which in the brain is about 10kg per day.!
In three prior articles?’~* suggestions were made for the chemical implementation of computing
machines: the chemical coupling of reaction mechanisms® far from equilibrium whose stationary
states have properties of a McCullouch-Pitts neuron,® led to the construction of logic gates, a finite
state machine which generalizes to a universal Turing machine,” and a parallel neural network
computer. In this communication we show a new class of parallel chemical computers based on
chemical kinetics systems with multiple stable stationary states coupled by mass transfer. We
demonstrate the computational capacity of such networks by storing patterns in it and solving
pattern recognition problems.

Consider a set of chemical reactions occurring homogeneously in an enclosure, which may be a
cell compartment, a neuron, or a stirred reaction vessel. Each enclosure is an open system: reactants

enter and products, intermediates and unreacted material exit. We use a set of chemical reactions
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which is bistable. There are many reaction mechanisms and physical processes in which bistability
is known including enzymatic reactions® and neuronal response.®? For simplicity of illustration we

use an inorganic chemical reaction, the iodate-arsenous acid reaction,!1?

IO; +3H3A303 = I~ + 3H3As30,, (1)

for which the kinetics are adequately described by the temporal variation of a single variable, the
concentration of I—. Bistability occurs in this isothermal reaction: for given range of input flows
of reactants (given constraints) the homogeneous reaction system at steady state may have either
a high or low [I~]. The two stable stationary states are not equally probable except at one set of
values of the constraints.

The systems communicate with each other by mass transfer; either diffusional, in which case it is

reciprocal, or active transport, in which case we require it to be reciprocal. The temporal evolution

of the ith system, i = 1,..., N in the network is!3-1*
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in which [I~], and [IO3], are the concentrations of iodide and iodate in the reactant flows that
maintains each system away from equilibrium, k4 and kp are effective rate coefficients, and & is
the reactant flow rate. The mass transfer coeficients, k;; = k;; > 0, are reciprocal and chosen by
a learning rule, and A > 0 is a scaling parameter which may be adjusted freely to optimize the
performance of the network. There exists a Liapunov function for chemical systemns described by
eqn. 2% which is an evolution criterion towards stable stationary states (analogous to the Gibbs
free energy of a system approaching equilibrium). If each system has only one stable stationary
state then the only stable stationary state of N coupled systems is spatially homogeneous. However,
since the systems are bistable, there are 2 possible stable stationary states of the network; the

bistability of a single system is essential to the network operation. Each system represents a pixel,
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and thus the stable stationary states of the network are patterns of low and high [I~], two of which
are homogeneous.

Patterns are stored in this chemical network analogously to such storage in neural networks. Sim-
ilarities and differences between the present work and neural networks of the Little!* or Hopfield'6~1®
type are discussed later. Let R} be the activity of the ith system in pattern p; R; =1 for the high
[I~] state and 0 for the low [I~] state. We use a Hebbian learning rule'® to determine the mass
transfer coefficients. If two systems i and j are in the same state in a stored pattern, either both
have high [I~] or both have low [I~], then the connection weight is increased; otherwise the con-
nection weight is decreased. The contributions to the connection strength between systems 7 and j

is summed over each stored pattern. The learning rule is

by = w0[Y (2R - 1)(2RE — 1)) 3)

P

in which 8(z) = z if £ > 0 and 8(z) = 0 if £ < 0. Thus, only if two systems are in the same state in
the majority of patterns will they be connected. This learning rule stores both the pattern and its
negative image.!®

All simulations are performed with eqn 2 but to gain insight into these coupled equations an
approximation can be performed. Suppose a number of random patterns are stored in the network
by the learning rule, and the network is presented a pattern with a few pixels in error relative to the
stored pattern ¢/, then the time evolution of the ith system in the network is approximately given
by3°

dlI- [Z-]hish 4 [1- ]t
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in which [I~]*%* and [I~}'™ are the iodide concentrations of the two bistable states. The first
term, f({I")), is the right hand side of eqn 2 without the summation and drives each system to
one of the two stable stationary states of the uncoupled system. The second term, ([I ‘]f' - I k)
drives system i to its state in pattern p’. The last term drives the system to homogeneity, and its

muitiplier?® a P) grows monotonically with the number of stored patterns, P, from o(2)=0and is
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about 0.5 when P = 5. Thus, when few patterns are stored in the network, they are expected to be
successfully rccalied:

The computational process carried out with eqn. 2 consists first of the storage of a number of
patterns in the network by the learning rule, eqn. 3; thus the network is programmable. Second,
the entire network is given initial conditions (i.e. each system is given an initial I~ concentration of
one of the two stable stationary states of an uncoupled system). These initial conditions constitute
the presented pattern.?! If the presented pattern is similar to a stored pattern, then the pattern
recognition process consists of the temporal evolution of the network from the presented pattern to
the stable stationary state corresponding to the similar stored pattern; the network corrects errors
in a recognized pattern so that it more closely resembles the most similar stored pattern. If tixe
presented pattern is not recognized, the network evolves to a homogeneous state. The number
of errors in recognized patterns are not always reduced to sero; extraneous steady states develop
due to the “mixing” of stored patterns.'® The network may correct many errors but may recall an
extraneous pattern instead of a stored pattern. The number of such extraneous states increases as
the number of stored patterns increases.

We characterize the chemical computer by examining the percentage of presented patterns, with
a known number of errors relative to a stored pattern p/,?' which result in recall of patterns in
the following classes: 1) ¢’ or its associated extraneous patterns, 2) other stored patterns or their
associated extraneous patterns, or 3) a homogeneous final state in the case of nonrecognition. The
minimum number of pixels which must be reversed to convert an extraneous pattern to a stored
pattern (i.e. the minimum Hamming distance) determines with which stored pattern an extraneous
pattern is associated. To measure the extent of the error correction in recognised patterns, we
calculate the average number of errors, relative to p/, from the recalled patterns in class one.

In Fig. 1 we show a typical temporal evolution of the numerical solution of egqns 2.13 The

concentration of I~ in each system as a function of time is indicated by the shading. Three patterns




were stored in a network of 36 coupled systems, and a stored pattern is recalled perfectly at ¢t =
10 from a presented pattern with 10 pixels in error, relative to the recalled pattern. The total
experimental time corresponding to the computer simulation is about 5 hours (the numerical solution
of eqn. 2 requires only a few seconds).? If we look at the time series for the 13th system, we see
that it is initially in the darker state but by the third time step it has been corrected to the lighter
state. On the other hand, system 12 is initially in the lighter state but is corrected at the seventh
time step to be in the darker state. Systems initially in the wrong state exert an influence on those
in the correct state. System 14 is initially in the light state, and in the recalled pattern it is also
in the light state, however between t=1 and 3 it begins to move toward the dark state, but then at
t=4 it returns to the light state.

What is the probability of a stored pattern being recalled? To study this we store three patterns
in a network of 72 systems, and the network is presented with a pattern containing a certain number
of errors relative to the pattern p'.3! After we calculate the steady state of the network, we place
it in one of the three classes. Plotted in fig. 2 are the percentages of the final states in each class
as a function of the number of initial errors (relative to p’). Presented patterns with ten or fewer
errors almost always result in the recall of patterns in class 1. The homogeneous state (class 3)
is never found (in 100 trials) and patterns in class 2 are rarely recalled. The recall of patterns in
class 1 is still the most likely result for patterns with 14 to 22 initial errors, but patterns in class
2 are occasionally recalled, and homogeneity is the second most common final state. For presented
patterns with large numbers of initial errors homogeneity is the most likely final state. Presented
patterns with more than 36 initial errors are attracted to the negative image of p/. If presented
patterns are chosen randomly less than 5% will have 25 or fewer errors relative to one of the stored
patterns or their negatives. From fig 2 most of these 95% with 25 or more errors will result in
homogeneous final states. The basins of attraction of the stored patterns, although substantial, are

small compared to the total number of possible presented patterns. The stored patterns are well
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separated in concentration space and surrounded by large areas of nonrecognizable patterns.

Not all recalled patterns are error free, but the average number of errors is substantially reduced
by the operation of the network. In fig. 3 is we plot the average number of errors in the final pattern
against the number of errors in the presented pattern calculated from those final states in class 1.
The pattern p’ is almost always recalled perfectly if the presented pattern has less than 14 errors.
For example, 99% of the presented patterns with 10 initial errors result in the recall of patterns in
class 1 (fig 2), and of these recalled patterns the average number of errors relative to p’ is 0.17, or
an improvement of a factor of about 50. Only part of the presented patterns with large numbers
of errors result in the recall of patterns in class 1, but for those in class 1 there is a substantial
reduction in the number of errors. The network typicﬁlly corrects most of the errors or rejects a
pattern as nonrecognizable.

Smaller networks also possess pattern recognition abilities, albeit to a lesser extent than large
networks. A network of 72 systems would be difficult to implement experimentally, but a network
with 13 systems and 32 connections is feasible.?® From eqn 3 we see that a network with two stored
patterns has on the average only 1/4 of the possible connections as nonzero. Thus, a network of 13
systems with two stored patterns has an average of 13 x 12/4 = 39 connections. If we restrict the
stored patterns to having no more than 7 systems in one state then the network has on the average
about 33 connections and from these we use only sets of stored patterns that require no more than
32 connections. The results are summarized in table 1. The pattern p’ is recalled almost perfectly if
there is only one error in the presented pattern. For two initial errors, 94% of the presented patterns
result in a recall of patterns in class 1 with an average of 0.37 errors, an improvement of a factor of
about 5.

We show that simple nonlinear chemical systems coupled by linear mass transport can perform
programmable information processing such as pattern recognition. The chemical network has many

similarities and some differences with a neural network of the Little!S or Hopfield'®~!® type: patterns
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are stored in both the chemical and the Hopfield network by a Hebbian learning rule, but the
connection weights (It.he ki;) may have either sign in a Hopfield network; the chemical systems must
be bistable, but the neurons in a Hopfield network are typically monostable; in both, stored patterns
are stable steady states and are recalled when the network is initialized in their basins of attraction.
In an electrical realization of a neural network,!? the neurons are amplifiers, the connections are
wires, the connections weights are resistors; their analogs in the chemical computer are the bistable
reaction mechanisms, mass transfer, and the mass transfer rates. The chemical network shares many
of the desirable features of neural network models: both are robust in the presence of noise, both
retain some computational power when damaged, a.pd in both the computational abilities are not
strongly dependent on model parameters. Because the connection weights can be either positive
or negative in the Hopfield network as well as in the chemical network described in refs. 2-4, they
perform better than the network presented here. The chemical implementation of parallel computers
given here and in refs. 2-4 provides a chemical basis of neural networks.

There are many biological reaction mechanisms and biological systems with multiple stationary
states; mass transfer among compartments in biological systems is ubiquitous. These are the neces-
sary components of the parallel computer presented here, and the components are at least available

in living systems. The predictions for the simple chemical case are verifiable.
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30gince the stored patterns are random, roughly half the systems in pattern p’ are in the same state
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as system : in pattern p’. The expected values of k;; in each case are

B PN Q@a+)=P)
<kj> = n:.Pz/:l—l( n )““W““ if (17 =TT (5)
=2 /P-1\(2n-P) / ,
<kyi> = SP—1A if Idf?}éf—f 6

Eqn. 5 is greater than eqn. 6 by a factor of 1/N, and (P) in eqn 4 is the value of the eqn. 6
multiplied by N.

3gtored patterns are generated randomly, and one of them is designated p’. A certain number of
randomly chosen pixels are reversed (i.e. a system which should be in the high [I~] state is set to
the low [I~] state or vice versa) in the pattern p’ to generate the presented pattern.

33The average time for a stored pattern to emerge depends on the reaction kinetics, and the iodate-
arsenous acid reaction is notoriously siow.
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Figure Captions

Fig 1: Sample time series obtained from a chemical network with 36 coupled systems and three
stored patterns. The x-axis gives the system number and the y-axis gives the time. The shading
gives the I~ concentration with pure black and white representing the concentration of I~ in the
high and low iodide states of an uncoupled system. Because systems in the high iodide state and
the low iodide state are coupled in the network, the concentrations of iodide in the recalled pattern
(at t = 10) do not match exactly those of a collection of isolated systems, and the white and black
in the recalled pattern are not as intense as in the presented pattern (at ¢ = 0) in which the systems
have iodide concentrations set to those of uncoupled systems. The presented pattern has 10 errcrs
relative to the stored pattern, and at ¢ = 10 a stored pattern is recalled perfectly.

Fig 2: Percentage of final patterns which are homogeneous (class 3), most closely related to
p' (class 1), or most closely related to the other stored patterns (class 2) against the number of
errors, relative to p', in the presented pattern. The network has 72-systems and 3 stored patterns.
The stored patterns are generated randomly, and 100 different sets of three stored patterns and a
presented pattern were simulated for each number of initial errors.

Fig 3: Average number of errors, relative to p/, in the recalled patterns calculated from the final

patterns in class 1 in fig. 2 against the number of errors in the presented patterns.
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Table 1: Resuits for a network with 13 systems, a maximum of 32 connections, and two stored

patterns with 7 systems in one state and 6 systems in the other state. The classes are as described

in Fig. 2.

Table 1:

initial class 3 class 2 class1 final
errors (%) (%) (%)  errors
1 0 0 100 0.04
2 0 6 94 0.37
3 0 21 79 0.84
4 3 41 56 1.79
5 8 42 50 3.36
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