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Abstract

Deneubourg et al. (1991) introduced a model of cluster-
ing behavior in ants. They found that simple model ants
were able gather into piles objects initially strewn randomly
across the plane. The model is in qualitative agreement with
the behavior of real ants. The model ants operate according
to local strategic rules and possess only local perceptual ca-
pacities. Nonetheless, they are able to impose global order.
What is the mechanism underlying this phenomenon? We
hypothesize that it is the combination of two processes, one
which decreases small-scale complexity, and another which
couples small-scale decreases in complexity to larger scales.
To test this hypothesis, we introduce variant ants which have
a complexity-seeking strategy. These ants can ”see” local
complexity, and tend to perform actions (picking up and
putting down objects) in regions of highest local complexity.
Using this strategy, they are able to accomplish their task
more efficiently than Deneubourg et al.’s basic ants. For both
basic and complexity-seeking ants, we find that complexity-
reduction begins at the finest scale and propagates out to
ever-increasing scales. Reduction of spatial entropy is used
as a global measure of clustering success. This global mea-
sure correlates well with a local measure of success which
the individual ants themselves can calculate: the proportion
of object depositions they perform which decrease the local
complexity.
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Introduction
Organisms can collect energy and focus it on the reduction of entropy in
their environment. We study this organizing capability of living things in
the context of a simple model of collective behavior in ants introduced by
Deneubourg et al. (1991). The ants of Deneubourg et al. are able to impose
order in their environment using most rudimentary perceptual, motor, and
strategic mechanisms. We will examine a number of variants to Deneubourg
et al.’s basic ants. We shall see that some of these variants succeed better
at their task than the basic ants do. However, our ultimate goal lies beyond
the engineering of better ants, in the direction of connecting local and global
criteria for the evaluation of autonomous-agent strategies (for some related
work see Meyer and Wilson, (1991) and Huberman (1988)).

The global measure we will use to evaluate the success of clustering strate-
gies is a standard statistical-mechanical measure: the coarse-grained spatial
entropy of the environment. As the ants can only perform local computa-
tions, they themselves cannot calculate global spatial entropy. As individuals
they are unable to know how much contribution they make to the collective
task. We will therefore build a local measure of success from quantities the
ants themselves can perceive, quantities related to their own internal func-
tions, and local effects they can make in their environment. Though we will
not directly consider learning in ants, it is clear that some such local measure
will be required as the basis of any learning algorithm which is to operate at
the individual, rather than the population level.

The Basic Ants

We will refer to the model ants introduced by Deneubourg et al. as
basic ants. Basic ants have 1) a finite memory, 2) an object-manipulation
capacity, the capacity pick up or put down objects, 3) a function which
gives the probability to manipulate an object as a function of the values in
memory and a random variable, and 4) the capacity to execute a brownian
motion. The memory is simply a register of length » in which is recorded the
presence or absence of objects at the ant’s previous n locations. Throughout
the present work n is set to 15. At each time step a basic ant generates a
random number p between 0 and 1. It manipulates objects as a function of
p and a threshold calculated according to
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where f is the fraction of memory locations registering the presence of an
object (an estimate of the local density of objects), and &% and k£~ are pa-
rameters, set by Deneubourg et al. to 0.3 and 0.1 respectively. In the present
work the values £%=0.43,k~=0.12 are used for complexity-seeking ants, and
k*=0.38,k~=0.15 {or the basic ants, as these values were found by simulation
to be near-optimal. P(put down), P(pick up) are computed if the ant does,
respectively does not currently hold an object. If p exceeds P then the action
is taken, otherwise it is not. Basic ants (as well as the other ants considered
here) do not put down objects at already occupied sites.

In the work of Deneubourg et al. the basic ants are used to collect objects
strewn on a square grid into piles. A close variant of the basic ants is used to
sort two different types of objects into piles of objects of a single type. In this
paper we will only consider the collection of objects into piles without respect
to type. We refer to this process as clustering, with the understanding that
the same approach could be taken to the full sorting problem.

The speed of clustering depends in general on the ratio of the number
of ants to the number of objects to be clustered. In the limit where this
ratio is small, one may expect a linear relationship between the number of
ants and the speed of clustering. When the ratio is high, i.e. when at any
given time a significant fraction of the objects are being carried by ants, this
linear relationship will break down. Here, as in the work of Deneubourg et
al., we study the limit of small (#ants)/(#objects) ratio. We use 25 ants for
approximately 3.3 x 10* objects.

Perception of Local Complexity

The ability of basic ants to reduce global environmental entropy can be
traced to their primitive capacity to perceive complexity locally and behave
accordingly. Complexity and entropy are closely related concepts. While
entropy can be reliably measured on a global scale, it is difficult to find an
adequate measure of entropy on a local scale. In this section we assert that
the basic ants of Deneubourg et al. already have some implicit capacity
to measure local entropy, and introduce a function, which we will call local
complexity, which is more explicitly related to local entropy.

Basic ants record in memory the presence or absence of an object at the
last n lattice sites thev have visited. From this record they calculate the
local density of objects on the lattice. Entropy is related to the density. At
either very high or very low density the entropy is low. while at intermediate
densities the entropy is high. Basic ants pick up or put down objects in a
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probabilistic fashion according to density thresholds. If the density is very
low or high, then the ant is likely to perform the correct action, picking
up in regions of low density and putting down in regions of high density.
If the estimated local density is close to a threshold, then the certitude of
performing the appropriate action (picking up or putting down) is low.

We build upon this insight by engineering ants which have an explicit ca-
pacity to sense complexity. Given a local configuration of states, complexity
can be estimated in various fashions. We choose a simple method based on a
9-cell neighborhood about the ant’s current location. A 9-cell neighborhood
in the square lattice has 12 interior faces between cells. The "complexity”
of the neighborhood is taken as the number of faces which separate cells
of different type-containing or not containing an object. Thus, either an
"all-empty” or "all-occupied” neighborhood will have complexity 0, while a
checkerboard pattern will have complexity 12. Complexity-seeking ants can
calculate the complexity of their current position, thus they can "see” the
ambient complexity of their local environment.

Complexity-seeking ants appeal to their sensory system to direct both
their physical motion and their object-manipulation activities. At each step
of simulation, each ant calculates its local complexity, C. The information
in the value C can be exploited either deterministically or probabilistically.
In a deterministic strategy, the value C is compared with a threshold. If
C exceeds the threshold, then the ant randomly choses a new direction of
motion and decides whether to pick up or put down an object at its current
position. In a probabilistic strategy, the ant generates a random number
between 0 and 12. If the number is greater than 12-(C 4 T'), where T is
a threshold, then the ant will randomly chose a new direction of motion
and execute the object manipulation strategy used by the basic ants. If
the number is less than 12-(C + T), the ant will continue along its previous
direction of motion, and will not attempt to manipulate an object. The result
of this rule is that complexity-seeking ants tend to manipulate objects only
in regions of high complexity. Similarly, the complexity-seeking ants execute
the random-move generator of the basic ants only when the complexity is
high. In regions of low complexity, such as the large spaces between piles in
mature environments, the ants generally continue in the direction they were
previously moving. The result is that complexity-seeking ants spend less time
in futile search in the spaces between piles than their basic-ant counterparts,
and spend correspondingly more time in careful processing at the borders of
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piles.

In these simulations, complexity-sensing affects both the movement and
object-manipulation strategies of the ants. No attempt is made here to dis-
tinguish between these effects. This will be taken up in a subsequent report.

We will consider a number of different threshold values for both deter-
ministic and probabilistic complexity-seeking strategies. For deterministic
strategies T values of 0, 3 and 6 are studied, while for the probabilistic
strategies T values of 0 and 0.5 are studied.

The patterns resulting from running each of these strategies 107 time
steps on a random initial pattern with density 0.1 is shown in figure 1. Note
that periodic boundary conditions are used (the ants are considered to live
on a torus). The panels are arranged top to bottom and left to right in order
of increasing determinism in the strategies.

After 107 time steps, the basic ants (figure 1 top left) have transformed
the uniformly random initial pattern into a mottled pattern of many small,
loose piles. The probabilistic complexity-seeking ants, T = 0.5 (figure 1
middle left) have in the same time produced a pattern with one nearly con-
tinuous, loose pile. 'The probabilistic complexity-seeking ants, T = 0 (figure
1 bottom left) have collected the objects into two, tight piles. It would seem
at this point that this strategy is by far the best, however see next section.
The second column of figure 1 shows the results of the deterministic com-
plexity seeking strategies with " = 0, 3,6, in top, middle, bottom, positions
respectively. While the deterministic strategy with T = 0 produces a good
initial clustering, the T' = 3 and T = 6 strategies are grossly inefficient.

The rectangular piles produced by the deterministic complexity-seeking
T = 3 ants are artifacts of the complexity measure we have adopted. When
the threshold is 3 and the rule is deterministic, ants can only put down or
pick up objects from the corner of a rectangular pile. Thus rectangular piles
are stable against the activity of the ants. The creation of such artifacts in
the case of highly deterministic strategies suggests that there is a lower bound
for the rate of random input required for good clustering. While the intro-
duction of a local complexity measurement has reduced the random-input
requirements of the basic ants, it has not eliminated it. It is evident that
to any fully deterministic strategy there corresponds a set of configurations
which cannot be clustcred.

Spatial Entropy
To quantitatively study the clustering phenomenon shown in figure 1, we
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Figure 1: Patterns produced by some variant ant strategies. All
patterns produced after 107 time steps on a 256 square grid. From top to
bottom, column 1: Basic ants, probabilistic complexity-seeking T' = 0.5 and
T = 0. column 2: deterministic complexity-seeking T = 0,3,6. Periodic
boundary conditions.

compute the evolution with time of the coarse-grained entropy of the pat-
terns. The coarse-grained spatial entropy is taken as ), 4ins Poroaindiogl Prvain )i
where Pyrqin is the fraction of the objects on the lattice which are found in
the given grain (X_,,4.us Forain = 1). The entropy is measured at intervals
during the clustering activity of the ants. Several different levels of coarse
graining are used in order to track the organization effected by the ants
across length scales. In typical simulations a 256x256 square 2-D lattice 1s
used, with periodic boundary conditions imposed. 5 levels of coarse grain-
ing are computed, varying from a 8x8- to 128x128-site grains. To control
inaccuracies due to clusters which span grain boundaries, the location of the
entropy-computation grid is shifted relative to the lattice, and a minimum
over shifts of the entropy is taken.

We see that in all cases entropy measured at the smallest grain sizes de-
creases quickly to an equilibrium value. The smaller the grain size, the faster
the approach to equilibrium. This indicates that organization begins at the
smallest scales and then propagates to larger scales. Stochastic fluctuations
due to probabilistic strategy elements facilitate the diffusion of organization
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Figure 2: Evolution of the Coarse-Grained Entropy. Top: basic ants.
Bottom:probabilistic complexity-seeking ants, T' = 0.5. The line thickness
increases as a function of grain size. Note difference in vertical scale between
panels.

from small to large spatial scales.

In figure 2 the evolution of the coarse-grained entropy at all space scales
is shown for basic and probabilistic complexity-seeking T = 0.5 ants. For
both basic and probabilistic complexity-seeking ants, the reduction in entropy
effected by the ants is seen first in the small scales and later at larger scales.
Small-scale entropy quickly reaches an equilibrium value while the large-
scale entropy continues to gradually decrease. The complexity-seeking ants
achieve lower values of equilibrium spatial entropy, at all scales, than the
basic ants. The reduction in entropy occasionally proceeds by jumps. This
is especially clear in the evolution of the coarsest-grained entropy under the
action of the complexity-seeking ants. These jumps follow plateaus during
which similarly sized piles compete for deposition of objects by the ants. In
every case. stochastic fluctuations will eventually lead some of the piles to
sufficiently dominate the others in size so that the ants act to amplify the
difference by positive feedback. This destroys the smaller piles and leads to
a new metastable state during which competition occurs at a larger space
scale.




We now examine the evolution of the coarse-grained entropy for four of
the variant strategies considered in this paper. In figure 3, the entropy at the
largest scale of coarse-graining is shown for each of these variant strategies.
This figure should be compared to figure 1.

The probabilistic strategy with 7" = 0 is initially a much better clusterer
than the other strategies. The probabilistic strategy with T' = 0.5 wins
over the deterministic strategy, but less impressively. However, in the end
game as the environment matures, the situation becomes more complicated.
When the number of piles has been reduced to 2, which occurs between 10
and 30 million time steps for all complexity-seeking strategies in this figure,
the more deterministic strategies cannot cope well with the task of choosing
which pile to favor with object deposition. The probabilistic 7' = 0.5 strategy
also enters a meta-stable state consisting of two piles, as we saw in figure 2,
but it is able to gradually break the symmetry between the piles. When T
is set to 0, the coarse-grained entropy may actually significantly increase for
long periods, as happens in this run at approximately 2.4 x 107 time steps
into the simulation.

Part of the reason for the failure of the more deterministic strategies
can be seen by considering the action of the ants in a mature environment
with large spaces between piles. For the deterministic strategy, and the
probabilistic strategy with T' = 0, no changes of direction occur in the empty
spaces between piles. Ants thus continue in a straight line through regions
between piles. If there are few piles, some ants will be trapped into orbits
which never intersect a pile. These ants perform no work. This ”compulsive”
behavior which a detriment at large time has positive value at short time.
A population of compulsive ants produces tighter piles than a population of
their well-adapted counterparts, and do so in a comparatively short time (see
figure 1).

Strategic Efficacy

We considered a number of different local measures of ant strategies. Two
of these will be described here. We give the ants the ability to measure the
local complexity of a site both before and after it puts down an object, as
well as an integer counter. Thus it can track its rate of success in reducing
the local complexity when it puts down an object. If an ant puts down an
object and thereby decreases the local complexity, it is considered to have
scored a success. The rate of success computed over intervals of 20,000 times
steps is shown as a function of time in figure 4 for four clustering strategies.
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Figure 3: Evolution of the Coarse-grained Entropy for the Variant
Strategies. This figure shows the evolution of the coarse-grained entropy for
each of the variant strategies: basic, probabilistic complexity-seeking T' = 0
and T = 0.5, and deterministic complexity-seeking with T' = 0.

The basic ants and each flavor of complexity-seeking ants were run 107 time
steps on a 256 x 256 grid. Remarkably, the raw number of successes in an
interval indicates little concerning the success of the strategy evaluated at
a global level. Indeed, the strategy which has the greatest initial success
globally, the probabilistic strategy with threshold 0, scores the lowest rate of
success measured locally.

If the rate of success is compared with the raw rate of putting down
objects, a picture consistent with the global measure of success emerges. This
is shown in figure 4. Here we see that the probabilistic T' = 0 ants rapidly
reach an equilibrium rate of success per put down of nearly 40 percent. Recall
that these are the best clusterers initially as judged by the rate of decrease
of the spatial entropy of the lattice. Probabilistic ants 7' = 0.5 eventually
reach the same rate of success, but take longer to do so. This again correlates
with the global success measure. The deterministic T = 0 strategy initially
has a local rate of success per object deposition similar to but somewhat
below the probabilistic T = 0.5 ants. The deterministic strategy appears to
reach an asvmptotic rate of local success which is lower than the probabilistic
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Figure 4: Local Measures of Success. a) The raw rate of success achieved
by each of 4 sorting strategies. b) The ratio between the rate of success and
the rate of putting down objects.

strategies. Finally, the basic ants have a very low rate of success per put-
down compared to the complexity-seeking ants. This too correlates well with
the global measure of success.
Discussion

The clustering behavior discovered by Deneubourg et al. is "emergent” in
the sense that ants are not explicitly programmed to form clusters. Cluster-
ing results from the dependence of the ant’s behavior on the perceived local
density. In much the same way, the complexity-seeking behavior described
here is emergent from from the dependence of the ant’s behavior on the
perceived local complexity. As with clustering itself, the complexity-seeking
behavior inherits robustness to perturbations from the implicit means by
which it is programmed. Clustering is representative of a large class of bi-
ological activities which lead to structure in an environment. Appropriate
adaptation of the complexity-seeking strategy could lead to new methods
from improving the efficiency of many types of collective computation. To
prepare for this, one should study how clustering depends on the topology of
the lattice, the number of tvpes of objects to be clustered and sorted, their
relative concentrations etc.

Our experimental results show that the global success measure, reduction
of spatial entropy, correlates well with a local measure of success, the propor-
tion of object deposition which reduce local complexity. The rate of successful
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object deposition by itself does not correlate with the global measure. It ap-

pears that the best strategy in this game is to invest increasingly more time
and energy into achieving each success as the environment matures. Churn-
ing the success counter by inconsiderately picking up and putting down ob-
jects does not lead to effective global behavior. While complexity-seeking
increases the effectiveness of clustering and reduce the amount of random
input required, there appears to be a lower bound to the amount of random
input needed to adapt to randomness in the environment.

The complexity-seeking model explored in this paper could be compared
with biological experiments. It makes predictions concerning the statistics of
activity of real ants as they go about forming clusters. For instance, it may be
possible to obtain laboratory measurements of the amount of time real ants
spend in various environments as a function of local complexity. A valuable
measure is the probability for an ant to change direction of motion as a func-
tion of the local environmental complexity. While it is unlikely that real ants
compute the particular, ad-hoc, local complexity function employed in these
simulations, it is reasonable that they would have some means to evaluate
the general simplicity or complexity of their immediate sensory environment.

The clustering problem is a good means to connect issues in compu-
tational sociology and ethology with the tools of statistical mechanics and
dynamical systems theory. On one hand it presents entities whose activities
have a clear biological interpretation. On the other hand, it exhibits phe-
nomena, such as a type of order/disorder transition, which are familiar from
physics. One hopes that this connection will help organize and direct the
study of autonomous agents.
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