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Abstract

In this article empirical modeling of natural phenomena is treated as a
mapping of sensory signals to response parameters of formal neurons. A new
version of the maximum entropy principle is formulated and applied to
optimization of this mapping. Its stochastic perturbation treatment leads to an
adaptation process that resembles the self-organization in biological neural
networks.

Introduction

The fundamental task of an intelligent system is to memorize influences
from its environment and to extract information from past experiences. In
biological perception and modern electronic measurement systems the
influences from the environment are transformed by sensors into signals
representing continuous random variables. In opposition to this the memories
of biological as well as of digital electronic information processing systems are
comprised of discrete elements like neurons and flip-flops. The aim of this
article is therefore to answer the question: "How can o continuous random
variable be optimally mapped onto a discrete set of memory units? For this
purpose we require that the mapping must optimally preserve the empirical
information provided by sensors. This leads us in the following part of the
article to the formulation of a new, so called absolute maximum entropy
principle and to the derivation of an algorithm describing a self-organization
process of formal neurons. (Grabec 1990)

The Maximum — Entropy Principle of Gibbs

The adaptation of a probability distribution to empirical data can be
successfully performed by following the principle of maximal entropy
introduced by the following problem. (Smith et al 1985) Let us consider a
discrete random variable X with the sample space S={x;, i =1..N} and let
there be given some experimental data in terms of expected values of several
functions g, of random variable X
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The problem is to assign the probability distribution {p;} to the random
variable X in such a way that it yields the above averages. If we have no other
information about the phenomenon except the mentioned set of expected
values then according to the mazimum — entropy principle of Gibbs (Smith et
al 1985) it is reasonable to select among all possible distributions that one
which needs for its specification the least information. The corresponding
distribution must yield the maximal entropy of information (Shannon 1948)
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subject to the set of constraints
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that also include the normalization condition.(Smith et al 1985) The
maximum — entropy problem can then be solved by the calculus of variations.
For this purpose we first multiply the constraints by Lagrange multipliers A,
and form the functional
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The standard variation procedure then leads to the system of equations for
multipliers A, and probabilities {p;}.

The absolute Maximum — Entropy Principle

Assignment of the probability distribution to a random variable on the basis of
some experimental data is the central problem of empirical modeling of
natural phenomena. Hence, it is not surprising that so many methods have
been derived from the maximum —entropy principle, but it is surprising that
only recently an essentially new version of the maximum entropy principle has
emerged (Grabec 1990) which is complementary to the above formulation. In
order to provide for its introduction let us discuss some properties of the
solutions stemming from the procedure described above. The resulting
probability distribution is generally not uniform and therefore does not
correspond to the absolute maximum of the information entropy, but to a
relative one.(Shannon 1948) The question therefore appears how we could
assign to the phenomenon under observation a probability distribution that
corresponds to the absolute mazimum of information entropy. The above
formulation of the maximum —entropy principle is logically consistent but
based on the relative maximum. If we want to relay our treatment on the
absolute maximum we have to change the fundamentals of the principle. We
generally do not want to change the assumption about the given empirical
data therefore the only possibility is to change the assumption about the fixed
sample space S and to allow for an adaptable one that yields the absolute
maximum of the information entropy. This means that we are looking for such
a distribution of sample points as will enable assignment of uniform
probability distribution to it and will still correspond to given experimental
data. These assumptions differ essentially from the Gibbsian ones and we join
them in the statements of the absolute mazimum — entropy principle:




1. Let us consider a random phenomenon describable by a variable X
with a continvous probability density function fi(z).

2. Let there be specified a set of reference functions {g(z,s)}, with 7s”
being a parameter, and let the empirical information about the phenomenon be
given in terms of the mean values of these functions {Gq(s)=E[q(z,s)]}.

3. Let the sample space Sy of a representative random wariable Q be
comprised of K sample points {q;; k=1,...,K} representing disjoint elementary
events, and let there be assigned to each sample point the same probability 1/K.

4. Let there ezist representative mean values of reference functions
{Gr(s)= L ¥ g(a,s)). With respect to the absolute mazimum-entropy
principle the discrete random variable Q) optimally represents the continuous
one X if some measure of discrepancy between corresponding mean values is
manimal.

Here we tacitly assume the number of sample points K to be
determined a priori by the design of an information processing system applied
in the description of the phenomenon under observation. The positions of the
sample points in the sample space S;={qy; k=1,...,.K} are not fixed by the
above statements but have to be placed at such positions as correspond to the
third and fourth statements. The entropy of information of variable QQ then
corresponds to the absolute maximum. The adaptation of representative points
to the probability distribution represents a problem that must be treated
specifically with respect to the selected measure of discrepancy between both
types of mean values. The reference functions and their mean values depend
on the parameter s. When the range of this parameter is a continuous interval
(—o0,00) we can utilize as the most simple measure for comparison of mean
values the average square distance

D = [ [G(s) - G(s)]* n(s) ds (5)

In order to ensure the convergence of this integral a weight n(s) can generally
be utilized. For the sake of simplicity we further assume 75(s)=1.

The quantity D represents a measure of discrepancy between the
probability distribution functions fy and f; pertaining to X and Q respectively.
It generally depends on the position of sample points in the sample space Sq-
The fundamental system of equations for the set {q, ; k=1,..K} is then
obtained by minimizing the discrepancy D as a function of qy :

Do s [lee-a) S a=0  r=1.K (6)
= J‘[G(s)FGr(s)] %;q;—q’*) ds=0 ;k=1..K (7)

A similar system can also be obtained for a multivariate case with s changing
into a vector and ds into a corresponding differential of a volume.

Stochastic Formulation of the Absolute Maximum-Entropy Mapping

In Statement 1. we assumed that the probability density function fy(x)
exists and yields the mean values of reference functions. However, in practical
applications of the absolute maximum-entropy principle we have to determine
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the mean values by averaging over the set of samples of the variable X in a
similar way to that described in Statement 4. for the representative variable.
With an increasing number of samples the estimated probability density then
changes ever less, which makes feasible a perturbation treatment of the
adaptation according to the absolute maximum-entropy principle. The
corresponding modification of the complete treatment in a multivariate case
and the related interpretation is as follows.

Let the vector X represent a M-component sensory signal. We treat it
as a continuous random variable and describe its properties by N samples
{x;,..xy}. The corresponding density of probability distribution is
empirically estimated by

N
folx) = 4+ 2 6(x-x,) (8)
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Instead of employing an increasing set of samples we prefer to apply only a
finite number of prototype vectors {q,...,qx} for the representation of the
random variable X. A representative discrete random variable Q is then
defined by associating a probability 1/K to each prototype vector
{P(q)=1/K:i=1..K}. By this assumption the mazimum entropy principle
becomes the basis of the optimal mapping X—@Q. If we then want to represent
the probability density of the continuous variable X by the function

K
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we have to accommodate the prototypes to the phenomenon under
observation. With this aim we compare the empirical 8 with the representative
density 9 and try to diminish their discrepancy. For this purpose the
singularity of the delta function is first avoided by filtering both distributions
by an appropriate window function g(x — s).(Parzen 1962) Here the parameter
s describes the window center. Filtering of both distributions then yields the
empirical and the representative average:
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The discrepancy between both distributions is described by the mean square of
the difference:
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The set {g,...,qx} which minimizes the discrepancy D, describes an

optimal mapping X — @ of the continuous onto the discrete random variable.
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The optimal prototypes satisfy the equations:
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In a trivial case when N=K the optimal mapping corresponding to the
absolute minimum D=0 is determined by

q =X, Q@=Xy ... Q=X (15)

Otherwise the window function g(x-s) must first be specified and then the
system of equations 14 must be solved. The window functions g(x-s) that
represent a smooth approximation of delta function are generally nonlinear,
therefore the system of equations 14 can not be solved in a closed form and we
are forced to apply an iterative treatment. For this purpose we analyze the
changes of prototypes at N >> K. With an increasing N, the empirical average
< g>e converges to a fixed value, therefore we assume that at large N, the
addition of successive samples causes only minor changes of prototypes.
Consequently a linear approximation can be applied to express the changes of
the difference ¢ which corresponds to a perturbation treatment:

& = €(q+ADQy;.., Qg tAGk ; N+1) = €(qy,...,Gx s N) + Ac (16)

Where
K M d<g>,

De =
=S 0

Aqg; + NL_H[E(XNHaS)“ <g>e] (17)

If the discrepancy D is minimal for {q,...,q;.} then the minimum of D, is
obtained by the changes of prototypes { Aqy,..., Aqy} that satisfy the
conditions:

8 D,
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They yield the following system of linear equations :

K M
2 2 Cmpi 2qii= By, 5 1=1L.K; m=1L.M (19)

k=1 i=1

The coefficients are determined by the expressions:

- .
_ [ dglar,s) dgl(q;,s) M
Curn ki —J O 9q;, ars (20}
-0
o0
B, = . K (Xags8) —<g >y 2BLUE) g (21)
Im = Wi1 [g N+1: & N] 3Qm
-0

The linear system 19 can be effectively solved by iteration if the conditions

wis |




Cimei=1 fork=i,m=i and |Cppl <« 1 for ki, m#i  (22)
could be satisfied by a proper selection of window function. In this case it is
reasonable to represent the system in the form convenient for iteration :

i+1) K o
Aqu ~ Blm—-kz#:l E Clmki Aqki 3 1=1...K 3 m=l.M(23)

The iteration starts with A qfo) = B,

As a reference for the presentation of probability densities the most
appropriate is the Gaussian window function :

g
g(x-s) = exp[—(gazi] (24)

With it the conditions 22 are fulfilled and the integrals in Egs. 20 and 21 are
analytically expressible as :
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In order to fill the gap between prototypes appropriately the width of Gaussian
function o should approximately correspond to the distance between
prototypes. If o, denotes the standard deviation of variable X, then it is
reasonable to select o=c_ / VK. (Parzen 1962)

Numerical examples

Here we illustrate the adaptation of prototypes q; in a one- and two-
dimensional case. The generated random samples xy are shown as thin points
in Fig.1, while the prototypes q; are shown as thick ones. Starting from the
trivial solution, the prototypes adapt to the ever less fluctuating empirical
distribution of normal random variable X. The empirical and the
representative cumulative probability distribution functions F of variables X
and Q shown in Fig.2 indicate the good adaptation of prototypes to the input
random variable X. It is also demonstrated by the quantitative agreement
between filtered probability densities <g>, and<g>, shown in Fig.3. A
slight discrepancy of both densities is mainly a consequence of the low number
K. The number of iterations was three, but a similar agreement results even
from a single iteration.

The adaptation of prototypes in a two-dimensional example is
demonstrated in Fig. 4. The input random variable with a uniform distribution
on a circle is represented by five prototypes. By marking the successive
positions of prototypes during adaptation five streams of points appear that
show the positioning of the prototypes. The final positions are shown in Fig. 5.
Again a uniform distribution on the circle demonstrates a good agreement
between the properties of the input and the representative random variable
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distributions. Other examples, obtained by using various chaotic generators
have shown similar performance of the derived self-organization

algorithm.(Grabec 1990, 1992)

Introduction of Formal Neurons and Conclusions

The maximal entropy principle has already been applied by Gibbs
(Smith et al 1985) in order to find the probability distribution function which
best corresponds to a certain set of measured statistical parameters. In his
approach the relative maximum of information entropy is looked for by
adaptation of probabilities to given prototypes. Contrary to Gibbs we adapt
the prototypes to a given probability distribution that yields the absolute
maximum of information entropy. In order to emphasize this difference we call
the basis of our approach the absolute mazimum-entropy principle.

For the interpretation of the optimal maximum-entropy mapping
X+—Q, it is convenient to introduce the following model. Let the variable X
represent sensory signals transmitted from the environment to the adaptive
system consisting of formal neurons.(Kohonen 1988, Grabec 1990) The
excitation of an individual neuron is characterized by the Gaussian function
centered on the prototype q;. The sequence of samples {xy} influences self-
organized changes of prototypes as described by the first term of coefficient B;.
But at the same time the neurons interact in the process of adaptation by the
self-organization described by the terms depending on q;—q, in expressions of
B, and C;;. The form of the coefficients B, indicates that the input signal
predominantly influences neurons having prototypes most similar to the input
sample by attracting them towards this sample. The interaction between the
neurons, or self-organization, is determined by modified bell-shaped functions
consisting of excitation (+) and inhibition (—) parts. All these properties have
been previously found in research into self-organization in some biological
neural networks and artificial models resembling them.(Kohonen 1988) We
can therefore conjecture that the absolute maximum entropy principle could
contribute to the explanation of the properties of biological neural networks.

From the above treatment it emerges that the estimation of a
continuous probability density from the discrete empirical data can be
interpreted as the inverse operation to the adaptation of a discrete variable Q
to a continuous probability density. From the experimental point of view the
first operation corresponds to sensing and mapping of the true world to an
internal picture of some information processing system while its inverse
corresponds to an optimal reduction of the internal picture during its storage
in a discrete memory connected to this system. The system can be either
electronic or also a biological one. The corresponding procedure can be
generally called the gquantization of a continuous variable. Optimization of
these operations are of importance for the development of corresponding
optimal devices intended for transfer of data or communication as well as for
the explanation of the reasons why the existing properties of biological neural
networks have developed.
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Fig. 1 The sample points (thin) and prototypes (bold) versus number of
adaptations N-K . ¢=0.1
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Fig. 2 Empirical (line) and representative (staircase) cumulative probability
distribution functions.
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Fig. 3 The agreement between empirical and representative averages <g>,.

and <g> .

Fig.5 Adaptation of five prototypes to a circular distribution. ¢=0.2

Fig.6 Final positions of five prototypes obtained after 500 adaptation steps.




