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1. Introduction

One of the great ecological problems is security of nuclear power stations. In order
to study all the aspects of ecological monitoring of a nuclear power stations one must
solve the problems of control, regulation and management, to predict the behavioristic
effects of a bio-community.

The analysis of the state of the lake Drukshiai in Lithuania, as a cooler of atomic
station, has shown that very complicated trophic interactions are taking place. In
spite of the fact that many mathematical models of ecosystems have been suggested
or even partially realized, a lot of problems still exist, the majority of which concern
the questions of stability, adaptivity and correspondence of the models to the actual
behavioristic characteristics (Garliauskas, 1985; Garliauskas et al., 1937; Medvedev,
1970; Pykh, 1983; Volterra, 1976).

Taking into account an exceptional importance of examining the whole complex
of the monitoring system and particularly approaching the problem systematically, we
shall deal with a concrete mathematical model of a lake-cooler ecosystem, taking into
consideration the thermal influence on the bio-community of the lake.

2. Three-component System
Let us examine a three-component biological community. The linkages between
the components are the following:

A— B —C,

where the component with biomass A is a victim as regards to the component with
biomass B, and the component with biomass B is a predatory as regards to the com-
ponent with biomass A and a victim as regards to the component with biomass C.




On the limits of the Volterra theory (Volterra, 1976) a model of this community
can be represented by the following differential equations: '

th =—Cith + Diz1yh — Eanzy (1)

{ £ = Ayz1 — Bizith
21 = —F]_Zl + Glylzl

But even if the feeding is unlimited the density of predator’s population can not
grow infinitely, because of shortage of some their resources, for example a territory. A
competition for such resources can be introduced in the third equation of (1) by means
of member —H z%. Then we have:

z; = A177 — Bizayn
1 = —Ciys + Diziys — Banz (2)
21 = —Fizy + Giyazn — Hi22

This system depends on eight parameters. Substituting the variables by
I = kli", Uy = kgy, zZ = k32, tl = k4f (3)

we change the scale of measure in order to eliminate four of the parameters.
Let us select the values of k; so that

A1k4 = 1; Blk2k4 = 1; D1k1k4 = l; k‘3k4 = (4)
and mark
k4C1 ZC; E1k3k4=E, F1k4=F, legks =G (5)
Then the system would look as
T=z—zy
{@}=—Cy+$yﬂEyz (6)
z2=—Fz+Gyz—-2*
marking z; = z, £, = y and z3 = z, we get

& = &y — T3%2 = F(z1,29,73)
;[;2 — —C:I:2 + 125 — E$3$2 == G($13x2?$3) (7)
T3 = —Fz3 + Gzoz3 -—m§ = H($17$25$3)

We can assert, considering the biological meaning of the coefficients, in the (2)
that

Ay >0, B;>0, Ci;>0, Dy >0 (8)
E, >0, F})O, G1>0, H, >0

considering (3), (4) and (5) we get, that coefficients k;, C, E and G are positive.
Besides from the biological sense of solutions we are interested only in positive z;(i =
1+3).

Let as find the equilibrium state of (7)system:
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11;21:0 Il(l—Ig):O
{:ﬁg =0= $2(—C+$1—E$3)=0 (9)
) ma(—F+G:c2—:J:3)=0

1. 2 =0, 2} =0, z3 = 0, (point A)

9, 22 =0, =0, z3 = —F, (point B)

3. 20 =0, 20 =0, z3 =0, (point C)

L0 o=, o =S, (point D)

5 28 = 1, 2% = C+ Bzl = C+ E(G— H), 2§ = —F + Gz = —F +G, (point E)

We assume that the quantity of each component is sufficiently large. This per-
mits to disregard the influence of stochastic effects. Therefore the exploration of the
balance points on the coordinate axes and planes is not interesting from the biological
viewpoint.

3. The Exploration of the Positive Equilibrium
State (point E)
Let us define the coefficients area so that from (9) we get that

G-F>0
{C‘+E(G-—F)>O (10)

There are the conditions of existing of nontrivial positive equilibrium state.
Linearizing (7) in the vicinity of (9) positive point, we get such a system:

ry — -—[C + E(G - F)](:EQ o $g)
23 = (21 — 23) — E(zs — 2§) (11)
z3 = G(G — F)(zz — 23) — (G — F)(ws — 73)

Characteristical polynomial of the system (11) is
¥ +/\2(G—F)+A[C+E(G-—F)+EG(G—~F)]+(G-'—F)[C’—§-E(G—F)] =0 (12)

In order the stationary point of differential was equalities system stable, it would be
necessary and sufficient that the real parts of roots of characteristical polynomial of
linearized systems were negative.

But by the Rauss-Gurwitch theorem in order the roots of the polynomial ag A%
a3 N2 4az A\ +az = 0 were negative, the fulfillment of such inequalities would be necessary
and sufficient:

((a; > 0
a a .
1 150, ie ajay —agag >0
ag Qa2 (13)
{ a; das 0 b i
ag Q9 0= ag a:; az >0

L 0 a; as

The last inequality is equivalent a3 > 0, 1.e. the conditions (13) can be written

{ag>0 (?:'—'17133) (14)
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For the polynomial (12) the conditions (14) are

G-F>0
C+EG-F)>0 (15)
{ (G—F)*EG >0

Comparing (15) with the conditions of existing nontrivial positive equilibrium
state (10), we see that if for the system (7) exists the positive equilibrium state it
would be always stable. But this state exists for every positive G,C, E, F if only
G>PF (f G>Fand C>0, E>0,then automatically C + E(G — F) > 0).

The fourdimensional parameter area

G>0, C>0, E>0, F>0, (16)

is divided by hyperplane G = F' into two areas with different solutions behaviour in
each of them. There is no positive stationary solution in one of them and there is a
stable solution in every point of another, i.e. the E point is stable knot or focus.

4. Building of Liapunov’s Vector-function
The (7) system is a particular case of such a system

Ni = Ni(b; = az‘ij), t=1l+n (17)
For this system
[N = Iz, 22, zs]l (18)
and matrix || B|| and |lai;] are the following:

1 10 1 0
el =\ -c|, lesl=|-1 0 E (19)
1

We shall show that matrix A = ||a;;|| is positively D-dissipative.
Let matrix D be

do 0 0
D=0 d 0f, d>0, i=1+3
0 0 ds
Then
0 dy 0
DA=|-dy 0 d&E (20)
0 —azG dg

A quadratic form, corresponding to this matrix, 1s

I
F(z) 3”"51332:5*"3“1)14 Ty || = z172(d1 — dy)

I3

—+ $2$3(d2E — de) + $§d3 (21)
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Let it be
ds > 0, dy —dy >0, do E — d;G >0 (22)

We can always select d; so that the inequalities were fulfilled, e.g.:

°¢  , _3G

d3=1, d2='TE—, d.]_ s

(23)

Then quadratic form (21) is positively defined, i.e. matrix is positively D-dissipative.
Besides that, system (7) has a positive equilibrium state in RY defined by equal-

ities (9). Then from the theorem 2.12 from (Volltera, 1976) follows this function

Ti

Eyz) =) di / BT (24)

—1 z
= z0

is energetic to the systems (7) in IntR.

Liapunov’s function has form

Ba(z) = — _ di(zi — 27 Inz:) + Eo(z), (25)

i=1

where

3
Eqo(z) =Y di(z} — 27 Inz})
i=1

Here 0 (i = 1+ 3) are defined by equalities (9), and d; (i = 1+3) — by equalities

(23) for instance.

where a;; are defined by(19).

D that DA is positively defined. We have that Eq4(z) > 0 for every ||z # ||z°]| and
l|z]| € IntR3.

The derivative of this function taken in power of system (17) is:

Ey(z) = — i:d,- (1 - %’;) T (b,— —~ ia,-jm,-)

i=1 j=1
3 3
=) (a} — =) > diaij(z} — z5); (26)
i=1 j=1

Ig D_
It is obvious that [ f‘z—z dz < 0 be z; < z¥ or z; > 27, hence Eq(z) < 0.
z?

Matrix A, as it is shown, is positively D-dissipative, L.e. there is such a matrix

Besides as




lim dr — oo (27)
r—0 T
and
. (2o
lim 2 dz — oo (28)
T— 00 T

then lim;_.g Eq(z) = oo and lim;—.o E4(z) = o0.

Hence it follows that positively defined stationary solution (9) is asymptotically
stable on the whole in IntR?% (by Theorem 2.13 from Volterra, 1976). Therefore, we
have the case of global stability, i.e., if a positively determined equilibrium state exists,
then every solution of the system approaches to the stationary, i.e., ||z(®]|| — ||z°]],
when t — oo.

Further let us try to determine if there are reserved trajectories in the final part
of the first octant. Using Medvedev’s criteria (Medvedev, 1970), lets take

M(z1,29,23) = L , then
T1T9I3
FM GM H 1
AL )+6(G )—[-a( M)=— <0 and z1=0, 22 =0
0z, Ozo Oz z, Ty

are integral planes. Hence from the Medvedev’s criteria follows that there are no
reserved trajectories in the final part of I_ntR?’*_ area.

5. System of Modelling

Here the concrete mathematical model of a ecosystem of a lake-cooler Drukshiai
of a nuclear power station Ignalina according (Svirezev et al., 1978; Odum, 1979; Park
et al., 1974) is considered.

The below given system (29) involves the following assumptions: the most limiting
is one substance, the behaviour of components is determined by food resources, not by
the inner state (age, rate of sexes, etc.); the intensity of the interaction is proportional
to the production of the quantity of the interacting components and does not depend
on the total quantity S, i.e., the most limiting substance in the lake. "
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dm,- 1 : T
r g =§ (ainmimn — i Z (1 -+ e,-j)a,-jmj i Q‘iCC,z- = dimi), t= 1,
JEK;
dz; 1
-(—i—;- =-§ (3&',— Z Qi;T; — T; Z (1 + eij)aijxj - g,-:t:?
JEP; JEK;

~ dizs —r,-x,-), s s

D (9527 +diz5) = Tam1 Y. Gn_1jz;

=1 J—€Kn_s1

| a1 ( (29)

— QTp-1 + E eija;j:ci:cj);

i,J

dz, 1/ = =

dt ='§' ( Z T;T; Bl a'mn—l) —Tn Zanizi) )
\ j=m+1 i=1

where
z; — components which unite populations according to the functional
groups:

Ti,...,Tm — procedures (macrophits, phytoplankton),

Tm+1,---3Tn—2 — consumers (zooplankton, bentos, fish),
Zn, — detritus and bacteria,
T, — biogene (the most limiting substance).
All z; are estimated by the units of the limiting substance and " z; = S.

a;; — coefficients of assimilation-utilization,

ei; — the part of food transformed to excrements,

r; — coefficient of respiration,

gi — coeflicient of interspacial competition,

d; — coeflicient of natural mortality,

p; — set of indices of the components which are used by i-th,

K; — set of indices of the components using the i-th,

o — coefficient of the decomposition of detritus,
matrix {a;;} is symmetrical, in matrix {e—1j} : e;; = o, if e;; # 0. All the coefficients
of the system are periodical in time as they depend on temperature and light intensity.

The main difference between the energetic model (Krishev, 1970) and the given
system is that the latter allows to find out the steady perennial oscillations of numerical
solutions within a wide range of meanings of parameters that are independent of the
initial data.

For the numerical realization of equations (29) is taken, the matrix of interaction
is presented in Table 1. While calculating we have assumed linear dependence of the
coefficients of interaction on light intensity and temperature which changed harmo-
niously within a one-year period.

The coefficient of mortality rate was found using the formula
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e
(T - Ti min)(Ti max — T) ’
where T is the temperature at a given moment, T},ax and T;pmin are temperatures of

the complete mortality of the ¢-th due to over-heat and over- freezing, c; is coefficient
of mortality rate without regards to temperature.

d;

(30)

Table 1 Interaction of the components of the model

Iy T2 T3 T4 Ts Te T7T Ty Tg T1p Ti1 Tiz i3

I =
To b

T3 —

Ta = - B
s =
Tg +
T7 * [+
Iy
Tg
Z10 + |+
11 0 0
Tl —|—|—|—1]- + 10

+ |+ |+ [+ +

I
|
I

I

I

[
+

I
4

+i- |

P41
AEAERE N
I

+ 1s stimulation, — is suppression, 0 is neutrality; z; is aerial, z; is floating, z3 is
bottom dwelling macrophyts; z4 is diatomic, z5 is blue-greenish algae; zg is proto-
zooplankton, z7 is placid zooplankton; zs is predatory zooplankton; zg is fish; z10 is
bacterioplankton; z1; is bentos; z12 is detritus, z13 is biogen.

The table does not present the accumulation of detritus due to die-out of the
components, and biogen z,3 resulting from respiration.

In the present case observation of the "paradox of phytoplankton” without in-
troducing (Dombrovsky et al., 1979) the ”outer hormone system” is possible. In fact,
three groups of macrophyts and two groups of phytoplankton are competing for the
biogene z3, however, this does not lead to the extinction of less adapted types: due to
matter balance and periodical coefficients, the elements which live under less favorable
conditions still survive, their quantity fluctuates below the mean annual level.

Some results of the numerical integration are presented in figures 1 and 2. Figure
1 illustrates the independence of behavioristic decisions of the initial data. It shows
that three trajectories which start from three different points converge after a while.
Changes in the behaviour of solution that take place when the characteristics of the
environment change are presented in figure 2. The behaviour of the system during a
seven year period is shown. Since the end of the second year till the beginning of the
sixth one the temperature had been rising by 5°C per year. Light intensity and the
amplitude of annual thermal oscillations did not change. The rise of temperature has
led to the extinction of the predatory zooplankton.

Conclusions
1. The generalized mathematical model of an ecosystem is proposed; the model
is investigated on the basis of a quality theory of a differential equations.
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Tig. 2. The comparison of solution (x) with
obgservation results (+)

TEMPLRATURE
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2. The case of a global stability on the basis of the Liapunov’s functions is proved,
i.e. the existence of the positive equilibrium state, confirming that any decision of the
system is approaches the stationary state.

3. The given mathematical model based on matter balance and first realized for
the ecosystem of a lake-cooler shows the identity of the behaviour of solution to the
actual processes of biocenosis.

4. The given model differs from the used energetical models in that it allows
to get steady perennial oscillations of the numerical solutions within a wide range of
changing parameters, which are independent on the initial data.

5. The results of simulation show the possibility to use the given model for the
purposes of predicting the behavioristic characteristics of an ecosystem under thermal
changes and other external factors.
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