Non-linear forecasting of cats eye movement time series
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ABSTRACT

The method of non-linear forecasting of time series was applied to the spontaneous
eye movements of the cat in order to determine whether that complex sensori-motor
system exhibits stochastic or chaotic behavior. Two particular states, normal awake
cat and pathologic nystagmus were analysed. This behavior appeared to be chaotic
in contrast with the normal case.
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A. Introduction

The study of eye movements presents a unique opportunity in understanding how
the brain controls behavior. The functions of the eye movements are of two principal
types. The first one is to keep images steady on the retina during the movements of
the head (this is the vestibulo-ocular-reflex) and during the movement of the visual
surround field (this is the optokinetic reflex). The second omne is to change the line
of sight by making saccades. The spontaneous eye movements are under voluntary
and involuntary controls that consist of several levels of a parallel neural network
organisation. The performance of these movements has been found to be impaired in
many different neurological and psychiatric diseases.[!] If the oculomotor processes are
relatively well understood on the biomechanical and neurophysiological points of view,
the global dynamical behavior of the eye movements remains unexplored. Therefore
it should be interesting to find out whether the eye movement behavior follows a
deterministic chaotic dynamics or a random phenomenon. As a first approach to this
question,we present here the application of non-linear forecasting to the horizontal cat
eye movement. This procedure is performed on spontaneous ocular movements during
two different cases : for a normal awake cat and in pathological eye nystagmic state
produced by a microinjection of a chemical subtance (NMDA receptors antagonist)
into the oculomotor neural integrator located in the brainstem.

For a few years the formalism of chaotic attractors has been applied to tentatively
quantify EEG!?l and ECGPI patterns. The method initialy used was the Grassberger-
Procaccia algorithml4] . However this method, at first sight easily applicable to exper-
imental time series, encounters criticism as it allows analyst’s subjectivity (choice of
the time lag, determination of the scaling region) and as accuracy and computation
time have contradictory requirements on the number of experimental data N. Another
way of testing time series is non-linear forecastingls]’lﬁl. The underlying idea of this
method is that distinction between dynamical chaos and statistical noise can be made
by the comparison of predicted and actual trajectories. The future of a deterministic
chaotic time series can be forecasted in a short time interval but the accuracy of the
forecast falls off with increasing time. For uncorrelated noise on the other hand the

forecasting accuracy is roughly time independant.

B. Method

The non-linear forecasting was performed as follows!SI"18]. From the original time
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series z; an embedding space of dimension n was constructed whose points X, are

X = (-’Bt:-'Bt—m-’ﬂt—zn---:mt—(n—l)r) (1)
where 7 is a time delay, t € [1,2N]

The data set is divided in two parts. The first N data points X, serve as a pattern
by keeping track of where they move p time steps in the future to make the predictions
& i, OF the evolution p time steps in the future for the next N points.

We adopt 7] for the prediction Xt for p time steps in the future for a given

point X, j > N, the following expression

- gl 1%, -X.|
Y= Z T e e (2)
i=1
where k;1p < N, |...| is the Euclidean distance and )‘E’k‘. is one of ng + 1 closest

neighbors (in the first half of the data k; < N) of X, a is a constant.

The accuracy of the prediction is evaluated by the correlation coeflicient between
forecast y;4p (first component of Y., ) and actual time series T;4p

Clp) = S YitpTity > — < YUj+p >< Zjt+p =
(p) =

where the average <> is performed over N points, NV +1 < j+p < 2N,0, and oy
are the corresponding standard deviations.

For example, to compute the correlation coefficient for predictions one time step in
the future (p = 1) points X; to X,y are used to predict the values obtained by applying
the iterative map (2) to points Xny41 to Xzy—1 and the results are compared with
the observed (actual) values Xy.2 to Xon.

C(p) ranges in magnitude between 0 and 1 for uncorrelated and identical distri-

butions respectively.

The evolution of the correlation coefficient with the prediction time has been
shown to be a means of determination of the dynamical behavior of the system. For a
periodic signal with additive uncorrelated noise, or for uncorrelated noise, the correla-
tion coefficient is time independent. A fall in the correlation with prediction time may
indicate either a chaotic signal with or without noise or a random fractal sequence.
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Random fractal sequences are a particular class of colored noise with power low spec-
tra p(w) = ¢(w)~® which fools other procedure for identifying chaotic behavior : in the
Grassberger-Procaccia algorithm they lead to finite correlation dimension 8] though
they are true random processes corresponding to an inifinite number of degrees of

freedom.

Non linear forecasting allows to go one step further in the distinction between
chaos and random fractal sequencesl®l : the behavior of in{1—C(p)) is a linear function
of p for small p in the case of chaos whereas it is a linear function of In(p) for random

fractal sequences.

We perform prediction for 2N = 500 points and average the correlation coefficient
over the whole enregistrement (=~ 4000 points). We normalize our data to the range
[—1,+1] before performing the prediction. We choose the time delay 7 equal to the
sampling interval (r = 10ms) and a = 0.0005. Results are presented for n = 3.

C. Results and discussion

Eye movements data were recorded with the scleral search coil method providing
the horizontal and the vertical components of the eye-position and sampled at 100 Hz
8], Surgical procedures and microinjection method were similar to those used in the
study of Cheron et al. 1], Fig. 1 and 2 present examples of such results for two types
of situations we analyse : the normal awake cat and a pathological eye nystagmic

state.

During spontaneous ocular movements like those illustrated in Figure 1, the gaze
either jumps rapidly from one point to another (saccade) or remains stable (fixation
period). The behavior of the saccadic system shows a unique feature : an invariant
relationship (the main sequence) between the peak velocity and the size of the saccade
[10] | The bigger the saccade is, the greater its velocity peak is. The frequency of this
saccadic movement is dependent on how the central nervous system processes visual
information. Young and Stark 111 firstly hypothesized that the saccadic behavior
is compatible with a sampled data system but subsequent studies have shown that
the sample data model does not adequatly explain some particular saccadic behavior
[12], In fact, the visuo-motor system appears to be able to elaborate program for two
saccades at the same time ['3l. Whatever the nature of this parallel processing, the
main sequence and the frequency of the saccade provide an identifiable scan path by
which the eye explores its visual environment.
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The non-linear forecasting analysis of a normal scan path (saccades made by
an awake cat, Fig. 1) shows a lack of clear dependence of C(p) versus p (Fig. 3).
However, C(p) cannot be considered as p independent and we cannot conclude that
normal horizontal motion is purely uncorrelated noise. Figure 5 indicates that this
scan path does not show either the behavior of random fractal sequences.

Microinjection of an NMDA antagonist into the brainstem oculomotor integrator
produces two types of saccadic disorders. The first one is characterized by a post
saccadic drift at the end of the saccade: the eye-position cannot be held and the eye
drifts toward the primary position. The second one,illustrated in Figure 2, corresponds
to a pathologic nystagmus caused by an unsustained eye-position command from the
defective neural integrator. Figure 2 illustrates the fact that the eye cannot be held
steadily in an eccentric orbital position, but drifts back towards the midline. In
this situation, the scan path of the eye is completely distorded, reflecting a clear

pathological behavior.

The non-linear forecasting analysis of this pathological scan path firstly reveals in
contrast to the normal case a regular decay of the correlation coefficient with prediction
time (Fig. 3).

The examination of Fig. 3 and 4 indicates a linear dependence of in(1 — C(p))
versus p for small p. According to the theory 6], this indicates that the time series is
chaotic. The slope of In(1—C(p)) against forecasting time is an estimate of K-entropy
and measures how chaotic the system is. This scaling behavior has been observed for
several time series issued from pathological nystagmic states and for different values
of o (cf. Eq. 2). We suggest that the pathological nystagmic pattern results from a
reduction of the number of degrees of freedom from the normal case. This encouraging
result should be confirmed by other approaches.
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Figure Caption

Fig. 1. Horizontal (solid line) and vertical (dashed line) eye-positions (arbitrary units) |

versus time for a normal awake cat.

Fig. 2. Horizontal (solid line) and vertical (dashed line) eye- positions (arbitrary units) |

versus time for a pathological eye nystagmic state.

Fig. 3. Correlation C{p) between forecasted and original time series for horizontal eye-
position against prediction time step p. A and [] normal awake cats, A and M

pathologic nystagmus.

Fig. 4. Ln(1 — C(p)) against prediction time step p. A and [] normal awake cats A and ll 4
pathologic nystagmus. |
|

Fig. 5. Ln(l — C(p)) agains inp. A and [] normal awake cats, A and @ pathologic

systagmus.
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