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Abstract

Connectionist models are described by graphs, involving parametrized nodes and parametrized
connections. We propose to extend the connectionist formalism to models where the structure
of the system is not only a graph, but involves also different topologic structures. The
topological nature of these models enables to provide easily stategies of cooperation between
individual component transformation and component regeneration. Adaptive fibres is a new
model which follows the principles of our general framework. These fibres aim at addressing
the problem to learn simultanously several functions, thanks to the recurring presentation of
learning sets. They also aim at recognising one of these learned functions among a large
number of others very rapidly (without testing every possible solution).
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1.Introduction

This paper has two purposes. The first one is to propose a general framework in which the
comparison of the main models of Artificial life and connectionism could be done. The second
one is to show that this framework suggests new aeras to explore, and new models to create.
An example of such a model is described.

The necessity of a common framework for different connectionist models has already been
pointed out (Farmer 1990). A connectionist model is described by a graph, involving
parametrized nodes and parametrized connections. To each node is associated an activation
variable. Three dynamics can be defined in the network : the activation dynamics which modify
the activations of the nodes, the learning dynamics which modify the parameter values, and the
graph dynamics. Farmer shows that this framework is appropriate for models such as neural
networks, immune networks, classifier systems, autocatalytic networks.

We propose to extend the connectionist formalism to models where the structure of the system
is not only a graph, but involves also different topological structures. In particular, we
emphasize the description of systems involving geometric elements which can produce by a
collective behavior an adaptive geometric form. In these models the interactions between the
elements of the system are not only expressed by connections in a graph, but also through
different topological relations in the space where the geometric elements are defined. We call
these models morphodynamic networks because they can be considered as geometric adaptive
forms in a mathematical space. In morphodynamic networks, one can distinguish the individual
component modifications concerning the values of variables describing the component, and the
component regeneration (creation, destruction and linking) which modifies the set of variables
describing the whole network.

The topological nature of these models enables to easily provide stategies of cooperation
between individual component transformation and the component regeneration. Such a
cooperation can be very important from the point of view of the learning theory (Deffuant 92).
Moreover, elaborated processes of component regeneration are easier to implement when using
the geometric properties of the system.

In particular, we propose to study the case of a system involving two types of components
which could be interpreted as short term (STM) and long term memory (LTM) components.
The STM components have regeneration processes which are faster than those of the LTM
components. However, LTM and STM components influence each other for their own
production.

We give an example of a new model, the adaptive fibres, which follows the principles of our
general framework. The basic geometric components are linear segments, which approximate
the features of 2-dimensional figures given by a distribution of points. The STM fibre is built as
rapidly as possible in order to fit the current distribution of points. The LTM fibres enable to
memorize the already encountered forms and to accelerate the building of the STM fibre.

Firstly, the connectionist formalism is recalled and then the framework for morphodynamic
networks is introduced. The adaptive fibres are then described as an illustration of our general
framework.

2. Connectionist and morphodynamic networks

In this section, we recall rapidly the main points of the connectionist formalism. Then the
extension of this formalism concerning morphodynamic networks is described. Finally, the
case of a system with 2 levels of components is developped.
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2.1. The connectionist model

A connectionist model is defined by a graph involving parametrized nodes and connections, and
nodes variables corresponding to the state of the node. Three types of dynamics can take place
in such models :

- state dynamics,

- connection and node parameters dynamics ,

- graph dynamics (connection creation/destruction, node creation/destruction).

This general framework is particularily appropriate for neural networks for which it is naturally
used. However, Farmer (Farmer 1990) shows that classifier systems, immune networks and
autocatalytic networks can be described in it. This can be summerized by the table 1:

Generic Neural net Classifier system Immune net Autocatalytic net

node neuron message antibody type polymer species

state activation intensity antibody antigen polymer

concentration concentration
connection axon / synapse / classifier chemical reaction catalysed chemical
dendrite of antibodies reaction

parameters connection weight strength and reaction affinity catalytic velocity
specificity lymphocyte conc.

sate dynamics sum/sigmoid linear thresholdand  bell-shaped mass action
maximum

parameter dynamics ~ Hebb/backprop bucket brigade clonal selection approach to attractor

graph dynamics synaptic plasticity genetic algorithms genetic algorithms artificial chemistry

rules

Table 1 : a rosetta stone for connectionism (Farmer 1990)

This work is of a great importance because it enables to point out the real similarities and
differences between several models.

We propose now to enlarge the framework to models for which a graph description is not
sufficient. In such models therefore, the interaction rules are more elaborated than simple
connection links.

2.2. Morphodynamic networks

Some models that have been developped and studied in the field of Artificial Life do not fit
exactly the connectionist formalism. This is the case of models in which the relations between
the components of the network depend on other topological relations than simple connections.
Among others, ant colony models (Deneubourg et Goss 1989), perceptron membranes
(Deffuant 1992) can be put in this category. Another example of such a network is provided
further (the adaptive fibres).

The generic morphodynamic network is described by the following elements :
- a mathematical space in which the system is defined,
- elementary components, described mathematically by a geometric form and a position in
the chosen space.
- a topological interaction domain is defined from the geometric form of the component.
Thanks to this domain, components can interact without explicit link.




Two types of dynamics can be distinguished in such networks :

Component modification

The component modifications are due to interactions with other components or with the
environment of the system. These interactions modify the values of the variables defining the
components. The rules governing these modifications depend on topological domains.

Component regeneration

- Component production : allows to complexify and develop the geometric form.

- Component linking : putting in common part of themselves, they enhance the coherence of
the network.

- Component destruction : enables the elimination of useless components and to satisfy
simplicity criteria concerning the structure.

Connectionist networks can be seen as a particular case of such networks for which the basic
elements are nodes in a graph, the interaction domain being defined by the connections of the
network. The graph dynamics corresponds to the component regeneration.

However, the elementary components of morphodynamic networks will generally be geometric
in order to build an adaptive geometric form.

2.3. Regularity extraction and 2-level morphodynamic networks

A 2-level morphodynamic network is characterized by the existence of 2 different types of
components, called C1 and C2. In such networks, C1 and C2 regeneration can influence each
other.

In this case, if we suppose that components C2 have slower modification dynamics, then C2
level can play the role of higher regularity extraction than the C1 level. For, it can take into
account events on larger time-scales. This is for instance the case in ants models where
pheromone substances play the role of C2 components, and the ants themselves are C1
components. The C2 components (pheromone), which have production rules depending on the
state components C1 (the ants), can be seen as a long term memory of the system.

This differenciation in the dynamics of the components is very promising in term of cognitive
performances because regularities of different levels can be extracted. In the following section,
our general framework is more precisely illustrated by the model of the Adaptive Fibres.

3. The Adaptive Fibres

The Adaptive Fibres are designed in order to deal with a particular learning problem : the
problem of regularity extraction in recurrent noisy situations, and the fast recognition of these
regularities. In its general formulation, this problem is a major cognitive issue. It is here
restricted to 2-dimensional figures.

3.1. The problem

In the framework of the formal learning theory, (Valiant 84, Baum & Haussler 89, Boucheron
92) adaptive systems (like neural networks) learn to approximate a function f fromaset Atoa
set B thanks to a set of learning examples drawn form a probability distribution L on A x B. In
this framework, if a network has learned a function f, and if a new set of examples drawn from
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a probability distribution ' on A x B, corresponding to a new function f, is learned by the
network, then, in the general case, the network forgets the first function f.

Adaptive fibres aim at addressing the problem to learn several functions, thanks to the recurring
presentation of several learning sets drawn form probability distributions corresponding to each
function. They also aim at recognising one of these learned functions among a large number of
others very rapidly (without testing every possible solution).

We restrict the problem in this paper to functions defined by probability distributions of points

from R2. This restriction is however important because it includes the problem of 2-
dimensional forms recognition and regularity extraction.

We consider therefore a set K of probability distributions [tk on R2, corresponding to noisy
figures in R2. The figures i may be letters, symbols, images from a camera etc...

Periodically with the period T, a probability distribution [k is chosen (with the probabilty 7tk).
Then a set Ek of N learning examples ekj drawn from Jii is presented to the system (figure
Al).

In order to deal with this problem, 2-level morphodynamic networks provide an interesting
solution. The Adaptive Fibres involve therefore two types of components called short-term
memory (STM) and long term memory (LTM) fibres. The difference between them concerns
only their dynamics.

3.2. Definition of a fibre and global functioning

A fibre F is a network of segments Sj (a set of interacting segments), given by their extremities
in R2.

F={S;=(X,Y) eR%XR? for i=1...[F
Two segments are linked by one extremity when this extremity is common to both of them.

One fibre F defines a figure in R 2. To this figure can be associated a function I from R 210
[0,1], given by a gaussian function of the distance to the fibre. This function I is used in order
to define the interaction rule between the segments and a point P (cf. figure 1).

I(E,P) = exp (—dz(f—-P—)]

G2

Where d(F, P) is the distance from P to the fibre, and ¢ a parameter. This distance is defined as
the distance from P to the nearest segment of the fibre. The distance of from P to a segment S
being the distance from P to the nearest point of the segment (with the euclidian distance). The
function I will be used in order to approximate the probability distributions from which the
learning examples are drawn (cf. figure 2).
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Figure 1 : interaction rule function of a segment.
The function corresponds to a gaussian of the distance to the segment..

Figure 2 : Examples of set Ex drawn from probability distribution [l on R2
and its approximation by a fibre.

The goal of the model is therefore to approximate as rapidly as possible the probability
distributions pk when a set of examples drawn from this distribution is given.

The model is defined by :
- a unique current STM fibre which approximates the current set of points,
- a network of LTM fibres.

When a new set of points is given to the model, it is compared to a restricted number of LTM
fibres, among which the most compatible are activated. The activated LTM fibres are used in
order to build the current STM fibre. When no LTM fibre is compatible enough with the current
set of points, the STM fibre follows its own dynamics, and the result is used in order to
produce new LTM fibres. These dynamics are now described with more details.

3.3. The STM fibre

The STM fibre is thus used in order to approximate the current state of the learning set. It is
helped in this task by the LTM network which is involved in the STM component production.

3.3.1. Component modification

We consider that a fibre is surrounded by examples (points), drawn from a given probability
distribution. A point P attracts the nearest segments thanks to a gradient descent on the function:

J(F,P)=1-I(F, P)




The point P is chosen at random in the current training set. The corresponding component
modification, which is given by translations of the points defining the extremities of the
segment is easy to compute (cf. Figure 3).

Figure 3 : component modification in STM fibres.
The segment is attracted by the point according to the differential of E(F, P)

3.3.2. Component regeneration in the STM fibre

Production

At the intialization of the system, a first segment is created at random. Then, in normal
functionning, L'TM fibres are responsible for the STM-segment production (cf 3.4).

Moreover, the STM fibres have their own segment production process, which is given by a
probability for existing segments to be cut into two parts.
Linking

By sharing one extremity, several segments may physically link them together. This occurs
when the distance between their extremities is below a given threshold (cf. figure 4). Two
linked segments are in direct interaction, when one is moving the linked ones are also moving.

S1 S1
| \ CS{ .

Figure 4 : linking STM components.
When the extremities of two STM components are close to each other enough
they merge and provide a link between both segments.

Destruction

A segment Sj is eliminated when the number of points P; located in its interaction domain Dj is
below a given threshold. Such a segment is considered as useless. This procedure provides a
simplification of the approximation given by the fibre which allows to extract the main features
and ignore some of irrelevant details.

3.4. The network of LTM Fibres

LTM fibres are organized in a network of fibres similar to the STM one. This network is used
in order to build as rapidly as possible the STM fibre corresponding to the current learning set
of points, and to recognize the already encountered forms. The network and its component
modifications and regenerations are described.
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3.4.1. Description of the network

The LTM network is made of fibres which are similar to the STM ones. Two LTM fibres can
be linked when they have similar segments (cf. Figure 5). All segments of a form are also
linked together.

Figure 5 : LTM network
The two LTM fibres are linked by a similar segment.

An activation value is defined on the segments of the LTM fibres. This activation value is
related to the probability of being chosen to be tested. A research of a form in the LTM fibre is
made through the management of this activation.

When a new set of points is given to the system, the segments are chosen with a probability
which is proportional to their activation. They are tested, and the distribution of activation
evolves according to the fitness. This evolution enhances the activation probability of the
segments linked to the tested segments which have a good fitness, and decreases the activation
probability of segments linked to those of a low fitness (cf. figure A4, A6). The tested
segments are added to the STM fibre if they fit the examples. This enables to eliminate or select
LTM fibres by testing only a small number of segments.

At the end of the activation dynamics two possibilities occur :
« a LTM fibre is recognized as fitting the examples (cf. figure A8),
» no LTM fibre is recognized (every activation is 0) (cf. figure A4).

3.4.2. Component modifications

When a particular LTM fibre is recognized, it is slightly modified according to the component
modification rules used for the STM fibre. This enables to average the LTM fibre on all the
encountered sets of points corresponding to this LTM fibre.

3.4.3. Component regeneration in LTM fibres

When no LTM fibre is recognized, the STM is developped autonomously until it reaches an
equilibrium. The result of this development is used in order to create a new LTM fibre (the
STM fibre is duplicated) (cf. figure A5). When a LTM fibre is recognized, this fibre is
reorganized according to the STM fibre obtained. These reorganizations involve production,
linking and destruction of components.

Production

When the STM fibre has a segment which is different form all those of the recognized LTM
fibre, this segment is added to the LTM fibre. This is the case when no LTM fibre is
recognized.

Linking

Every new segment of a LTM fibre is linked to all the other components of this fibre.




Besides, the LTM network has an autonomous activity which compares couples of LTM fibres
and links them together by their similar segments.

Destruction

When the STM fibre gives a better approximation with a simpler structure (less segments), the
corresponding segments of the LTM fibre are eliminated and replaced by those of the STM one.
The LTM fibre is therefore always ameliorated.

5. Conclusion and future work

In this paper, a general framework concerning a large family of models, the morphodynamic
networks, is proposed. This framework is inspired by Farmer's Rosetta stone for
connectionism. Morphodynamic networks distinguish themselves from connectionist networks
by the geometric character of their components, defining topological domains of interactions.
For them, the description by a simple graph with connections is not sufficicent.

The introduction of different types of components enables to implement more elaborated
behaviors, in which the equivalent of a long term memory is involved. An example of such a
model, the adaptive fibres, is described in the paper.

The implementation of the adaptive fibres is only at its beginning and the research for different
the dynamics are still in progress. However, even at the current state of development, the
following points concerning this model must be underlined :

- the model could provide fast recognition among a large number of already encountered forms,
- the model extracts automatically similar features between the encountered forms and uses
these similarities in order to reduce the number of tests to make for the recognition of a given
form,

Many difficulties still remain. However, the approach of 2-level morphodynamic networks
gives new opportunities to deal with the form recognition problem by the direct use of topologic
regularities in the model. These models could give new recognition tools that could have
interesting applications in robotics for instance.

Furthermore, morphodynamic networks could be related to theories of the living, in particular
the autopoiesis of F. Varela and Maturana (Varela and Maturana 1974). The component
regeneration, which is in the heart of the autopoiesis property is also very important for
morphodynamic networks. These approaches emphasize the modelization of a body for the
artificial cognitive system. This is one of the most important characteristics of the Artificial Life
stream.
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Figure Al : A new set of examples is given to the system, the STM fibre is randomly initialized o it
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Figure A2 ; the STM fibre enables the system to both approximate
the data and center the figure
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Figure A3 : When the approximation given by the STM fibre is stable (right),
it is stored in the LTM fibre (left)
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Figure A4 : When a new set of example is given to the system (right), it tries to
recognize it in the stored LTM fibres (left)
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Figure A5 : When the STM fibre is stable (right), if no LTM fibre is recognized (left),
the new STM fibre is merged to the current LTM fibre (left)
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Figure A6 : At the second presentation of a given set of examples (rigth), the LTM fibres are tested (left).
This changes the distribution probability on the whole LTM fibre (bottom)
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Figure A7 : Due to the evolution of probabilities on the LTM fibre (bottom),
the comrect LTM fibre is find and tested (left)

Cy:41 Age:1681 Seg : 4 SegMem:0 3 5 82 Niv2:1 Film:0 Fig:5/11 @
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Figure A8 : The tested LTM fibre is recognized (left)




