Looping as a Means to Survival: Playing Russian
Roulette in a Harsh Environment

Robert Davidge
School of Cognitive and Computer Sciences
University of Sussex
Brighton BN1 9QH
England
robertd@uk.ac.susx.cogs

Abstract

The von Neumann architecture has long been the heart of all com-
puters. Its apparently rigid structure has led to it being accused as
the antithesis of the new approaches to programming led by Artificial
Life. However, slight modifications of this structure allow us to pro-
duce a processor which behaves like a simple organism. A population of
virtual processors have been designed to live in an environment consist-
ing of a 2-D memory of machine instructions. The processors execute
these instructions and thereby affect their own state and the state of
the world they inhabit. This first experiment shows that in random
conditions and playing a game of russian roulette, populations survive
and display a specific strategy of looping forming clusters of organisms.
We also see evidence for a phenotypic shift under strong selection.

£59

Introduction

Every processor in every computer that you use today has basically the same ar-
chitecture. This initial design [Burks, Goldstine and Neumann, 1946] has changed
only in minor details and the material of its implementation in nearly fifty years.
So despite all the alternative possible processor architectures, none has actually
come close to rivaling the practicality of the von Neumann design.

We need also to remember the sheer beauty of this design - perhaps something
we forget since we first were introduced to its innards in college. The prevalence
of this design and the programming methods which have arisen around it are so
ingrained in the way we now think of computers that it has led one commentator to
place the blame for the patterns of our thought about computers and programming
upon the von Neumann design [Brooks, 1991]. However, we are responsible for our
own patterns of thought. If we choose to think in the frame of mind of a biologist
then we can begin to see biological types of processes in the artificial creations that
surround us. To this respect, the automobile has long been used as an analogy to
the organism. We can extend this model to actually ask the question what would
an automobile require to actually make it an organism. This line of speculation is
very much in tune with Rodney Brooks’s actual approach to designing robots to
function as organisms.

By applying the biologist’s way of viewing the world to computer systems,
we can immediately adapt these “rigid” systems to more flexible, or robust ones
(see for example [Fontana, 1992; Rasmussen et al., 1990; Ray, 1992]). Tom Ray’s
Tierra has now become famous as an illustration of this approach of viewing the
mechanistic world through the eyes of a biologist rather than an engineer. This
approach though does not end with Tierra. All of the creations of computer sci-
ence are now available for examination in the light of the biological revolution in
the informational sciences. John Koza’s use of the Lisp sub-tree mechanism is a
beautiful example of the adaptation of existing computing methods to a biological
analogy [Koza, 1990]

In Tom Ray’s Tierra the organism is considered as an area of contiguous ‘as-
sembler’ instructions which when executed by a processor act as simple self repli-
cating loops. Using the special operating system of Tierra, the ancestor organism
allocates memory space and copies its own description into this daughter area.
Through mutation and sloppy replication the populations have developed many
interesting forms of commensal living.

Using the same basic computer system as the starting point, we can shift our
view from the programs formed in the memory to the processor itself [Davidge,
1992]. Now we consider the actual processor to be the organism and the memory
of instructions to be its environment for exploration. A simple reorientation of as-
pect and the static computer processor requesting instructions down the memory
bus can become an organism moving through the memory. It is the same proce-
dure, but it entirely changes the way we regard the results and what we can do
with a computer. We have released the constraints on our thought processes and
consequently on our computers.

To be of any interest biologically, the memory must be 2-dimensional not 1-
dimensional as in all standard stored-program computers. Whenever we execute a

26Go

normal program the instructions are strung together in a sequence and the proces-
sor works through them one by one. This order is only broken by Jump instructions
which enable us to write loops entered or exited by conditional instructions. This
ability makes the von Neumann design Turing equivalent, able to execute any
program described by a particular Turing Machine [Minsky, 1967].

If we think of the execution point moving through the instructions as repre-
senting the position of the organism, then it is easy to see that we shall not get
very interesting behaviours. The point will move in a straight line occasionally
jumping through space and starting again. But if we get rid of the idea that the
processor exists to execute our program then we can let it move in a 2-D or 3-D
space of instructions and the motional behaviour will become a continuous track
through space. Such motion is shown by all animals to some extent, but is espe-
cially reminiscent of those animals inhabiting a basically homogeneous world, e.g.
earthworms or protozoa.

A =B—= C D E = F G---=H---—-=1

A "

AN
A\,

E D

Figure 1: Turing Equivalence in 2-D

Of course, by removing the Jump instructions we have apparently lost our claim
that this processor is still Turing Equivalent. Some might argue that this power
was in some way essential to the quest for Artificial Life. Whether this is so or
not, we can still demonstrate that the potential of this processor to execute the
same program as one in 1-D is still present. Figure 1 shows the sequential program
where B is the top of a while loop and G is the bottom. In 1-D the program is
tested at B, passes through C-F and at G jumps back to B for retesting. In the
2-D track, the organism-processor passes in a 2-dimensional loop from B through
C-F and back to B where it is retested. One result of the test would be to carry on
round the loop again and the other would be to alter its direction and pass to H.
Note G is no longer needed, but B must have influence on the processor-organisms
direction of travel. All this may be interesting to computer scientists, but it is
irrelevant to the processor-organism. Ounly survival and possibly breeding is of
consequence from its viewpoint.

The actions of the processor-organism are completely local. It fetches the next
instruction and processes it. The effect of that instruction is entirely restricted
to that processor-organism. Normally we can expect it to alter the state of its
registers. If the organism can also read the environment directly into its registers,
then the world can directly influence the state of those registers rather than just
causing internal processing of the initial state. The same memory location can
be regarded as both program and data. Here this is equivalent to both affecting
the physiological process and actually forming the substrate for that physiological
process.

The ability to write to the world is even more radical. Through this action the
processor-organism is able to change its environment. That change is indicative
of its own internal state. It has left its mark upon the world and through that
mark the possibility of communication and co-evolution appears. Because of this
a population of processor-organisms can interact indirectly with each other by
changing the state of the world around them. Their actions have consequences for
other processor-organisms passing through the same area at a later date. So just
through the basic functions of a processor: fetching, execution, reading and writing
we have the basis of behaviour for an organism displaying motion, physiology,
ingestion of substrate, and action through egestion or secretion.

The environment itself has no power of its own. It is a receptacle for the pro-
cessings of the organisms. But the processor-organisms themselves are controlled
entirely by the instructions and data that they take in from the environment. Thus
we can say that they are at the mercy of the environment, but rather it is bet-
ter to say they are at the mercy of each other. Here then lies the potential for
co-evolution, the possibility of competition or cooperation.

Finally I need to emphasize three things. Firstly the semantics of the processors
and their organisms are entirely self-referential. Our view does not come into it
other than how we create the initial structure of the system. These processors are
not executing useful programs for us, but survival patterns for themselves.

Secondly, there is no natural analogy for resource limitation that can be carried
out through local sensing in this model yet. Since thisis assumed to be fundamental
to the evolution of ecosystems, physiology and behaviour it will be interesting to
see how far we can go without it.

Thirdly and lastly the processor-organisms need to be selected. In the experi-
ment described selection is both through death and through sexual proclivity. This
selection, though intrinsic [Packard, 1989, is still via ‘the hand of god’. It is not
fully intrinsic in that it is not a dynamic part of the co-evolving system itself.

Anatomy of a Virtual Processor-organism

It is possible to design many variations on the basic von Neumann architecture.
This design described here is the specific one used in the current implementation
and is illustrated in Figure 2. It comprises two 4-bit registers, an ALU, a 2-D
current address register, an instruction register with a special instruction-ID tag,
special incrementers for altering the current address when fetching, reading or
writing and a variant on a microprogram complete with microinstruction register
and interpreter.

262

Memery Bus
Sgambla]R:gixl.:A l—— l Directional Read/Write
------------ 1 Comral | B
1
Micoinsguction Direcsionat
i e Change
¥ position
Micoinzmuction . | "
{nstrucdon
Buy
|

Decoder —I Proczsser

16

Cher

(ar scctions of -
the microprogram) edsc

| AEPOOUCHON |lecmcccmcscccms=saes

¥
1
Now Orgarssm

Figure 2: Processor Layout

The two 4-bit registers are implemented using modulo 16 arithmetic, e.g. 15
plus 1 becomes zero, with negative as well as positive numbers. The ALU is
standard and has been taken from [Cline, 1981].

Each instruction fetched from the world is one byte long and the first 4 bits
are used as the machine language for the processor. Each of the 16 codes causes
execution of a microprogram interpreter to begin at the section of microprogram
relevant to that code. When the end of the section is reached control returns to
the fetch part of the processor cycle. Certain microinstructions act as conditional
breaks upon the execution of the microprogram. They permit testing of the regis-
ters for zero or equality states and if satisfied prevent execution of the remainder
of that section by returning control prematurely to the fetch cycle. These microin-
structions allow the processor of 2 dimensions to retain its Turing equivalence as
discussed in the introduction and illustrated in Figure 1.

Each section of the microprogram may be of any length, but in this experi-
ment, using cloning, it is fixed at 10 microinstructions. We might like to think
of these sections as ‘chromosomes’, so that the processors are organisms with 16
chromosomes!

Microinstructions are represented as bytes. The 8 bits are allocated into micro-
orders which encode specific operations. For example, the first two bits determine
whether the microinstruction refers to an ALU operation, a read/write operation,
a change in the motion incrementer, or a conditional break. Within an ALU op-
eration, say, the next 3 bits determine which particular operation is to be used
and the 6th bit selects the register which will be updated. Thus, for example, the
microinstruction 011110 adds registers A and B together and places the result in
register A.

2E5

At each clock cycle one microinstruction is executed. Each processor is per-
mitted one clock cycle in the parallel activity simulator and so every processor
in the population progresses at the same rate executing microinstruction by mi-
croinstruction. But each processor will be at a different point in its microprogram
dependent on its genetic makeup and past activities.

When the microinstruction interpreter has come to the end of a chromosome,
the processor fetches another instruction to execute from the world. The instruc-
tion is fetched from its current position to which the processor has just moved by
incrementing or decrementing either or both of its position registers which hold its
x and y coordinates. The positional incrementers have the values -1, 0 or +1 and
their current status is controlled by microinstructions which increment or decre-
ment them. Thus when the new position of the processor is calculated just prior
to the fetch, it may have moved in one of 8 compass directions.

A similar arrangement is used for reading from the environment or writing
to it. The relevant microinstruction contains a 3 bit field which determines in
which of 8 directions the read or write occurs from around the current position of
the processor. The processor is both influenced by and influences only very local
conditions.

When organism-processors reproduce they do so by the operating system allo-
cating a new body with the same anatomy and position as its parent, and with
random values in its registers.

Playing Russian Roulette

This model is highly maleable and many ideas can be tested within its framework in
the future. The first experiment chosen was to investigate whether or not evolution
could occur.

It is essential for evolutionary experiments to include variation and selection,
but there is no inherent or truly intrinsic selection in the system. The processor-
organisms do not compete for natural resources, nor do they prey one on the other.
Also the processors do not age or die. Since we can find no natural population
control within the system we must artificially introduce one.

In this experiment both death and reproduction are achieved when a processor
has finished executing an instruction. If at that moment it has either the lucky
or the unlucky number in its register A, then it either gives birth or dies. These
two fateful numbers are chosen randomly at the beginning of the program. They
must of course be different to allow organisms to either avoid death or become a
parent of many offspring. The two numbers must also occur in the same register,
otherwise processor-organisms would rapidly evolve that failed to operate on the
death register and only operated on the birth register.

This set up seems to be a deadly game of Russian roulette for the processor-
organisms. They can achieve immortality by never operating on the birth-death
register, but though they influence their environment individually, they are sterile
members of the evolving population. In order to chance reproducing, everyone
must risk death.

In terms of computer science we can say that the selection is against programs
which halt. So long as a program has not halted it may have a chance of reproduc-

264 |

ing either through its internal processing or its external actions. Once it achieves
the global halting condition for all processors, it is removed. Thus we would hope
for the evolution of processors which did not halt or for the evolution of ‘lucky’
processors which continue to hit the jackpot and spawn offspring processors.

The dynamics we might expect of such a system would be that they maintain
a constant population size and average lifespan unless evolution of some sort had
occurred. Since every processor in the initial population is given a random fixed-
length genome; random values to its registers; and processes a randomly generated
environment, we might expect that the death number would occur with the same
frequency as the birth number, therefore maintaining the population to a relatively
constant size. Indeed we could attempt to calculate the life expectancy of any
processor. Given the proportion of microinstructions that affect the birth-death
register, and the 1 in 31 chance of hitting the dread number. We would expect the
average lifespan to be 31 divided by the proportion of ‘active’ microinstructions
(those affecting register A). Significant deviation from this average lifespan or the
initial population should then be an indicator of something other than random
activity.

These conditions are extremely harsh — only the structure and operation of the
processor being given and all else being random. We might expect the population
to remain constant for many generations and if some deviation from normal were
to occur, after a very long time, this could indicate that the seeds of evolution
had appeared. If evolution was not going to be demonstrable, then no significant
deviation would be seen within the running time of the experiment. The actual
results came as a surprise which seemed at first inexplicable and perhaps due to a
mistake, but on further investigation there seems to be a consistent explanation.

Twin basins

Every population examined so far has shown one of two general behaviours which
are aspects of the same behaviour. From the initial starting population, which
within the confines of our computing facilities is a maximum of 16,000, but was
usually 4,000 or 8,000 then the population either dropped toward extinction, set
at less than 20 remaining, or rose to its maximum permitted level say 16,000 or
32,000. More often than not it rose to the maximum and demonstrated an initial
dip before rising (see Figure 3). Indeed this dip was common to both outcomes.
Either the population recovered and went on to reach its maximum or failed to
recover and stagnated or died out.

Phenotype Shift

This behaviour remained inexplicable until the register values were examined. If
the phenomena were due to random causes then the distribution of values in the
registers should be equal. No value should appear more often than any other value.

From Table 1 it is apparent that this is definitiely not the case. Indeed there
is a large preponderance of zero with higher distributions of numbers close to it
resembling a gaussian. By systematically changing the operators in the ALU it

L6S

4.0

3.0
log
Population
Death value =0
2D Birth value =42
Conditional Breaks Operational
L0
(v}
1 2 3 4
Time x J000 microinstructions
Figure 3: Population Change with Time
Register value -15 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ... 15
% occurrence 0 ... 0 2 4 5 12 5 2 2 1 1 0 1 0 ... O

Table 1: Distribution of Register Values without Selection Against Zero

could be demonstrated that they were responsible for the unusual distribution —
most especially ‘set zero’, ‘AND’, ‘shift right’ and ‘shift left’. Remember these
operators are standard for a simple ALU (they were extracted from [Cline, 1981]).

Experimentation soon determined that the only populations not to succeed in
reaching their maximum were those with the ‘death value’ set at zero or +1. We
now have a means of introducing selection against the major phenotype of the
population. What would happen when the ‘death value’ was set at zero and the
‘birth value’ varied?

Generally, if the ‘birth value’ was set beyond 47 or -7 then the phenotype of the
population could not migrate downhill sufficiently far to reach the ‘birth value’ and
cause a take off in reproduction. But if the ‘birth value’ was within this ‘migrating
range’ then the phenotype would migrate toward the ‘birth value’ (see Figure 4).
It was not necessary for the phenotype to reach the actual ‘birth value’, but rather
to generate harmonic-like peaks leading off from the main migrating peak. These
were sufficient to cause the population to eventually take off. This ‘migrating
range’ within which the population succeeds and outside of which it stagnates is
reminiscent of Langton’s edge of chaos [Langton, 1990]. The migration down-hill
away from the peak is a nice illustration of a converged population experiencing a
change in the fitness landscape (see [Harvey, 1992 figure 7]).

Birth Value Death Value

Time Period

Aeon x1000 Frequeney
microinstructions % ocenrencs

Acon0

...l'g

Acon 1l —/\/\\—V\/N\/\

Acon 12 ’M—/J\f\w

Acon 13 ,W\/\A/\[\/\/\/\,\/\m

-4 -12 -0 -B £ <4 2 [} 2 4 6 g 10 12 14

Register Values

Figure 4: Migrating Phenotype: the mode of register values shifts from the death
value towards the birth value

Behaviour at the Population Level

By measuring the average range traversed and the number of instructions executed
before death (typically 10-200) it became apparent that the processors were turning
rapidly within a short space — indeed they were looping to survive! All the
populations, which displayed exponential growth, exhibited clustering as the only
successful strategy for survival in this environment. Figures 5- 7 show a typical
population changing from a random distribution to a clustered one of islands. In
Figure 5 the organisms are distributed randomly across the environment and show
up like waves upon a sea. Within one generation the basic pattern of islands
in a barren sea has appeared (Figure 6) Each island represents a small colony
of genetically similar individuals probably cloned from one ancestor. Figure 7 is
taken from the final maximum population showing that the pattern of islands has
not really changed only the size of the colonies.

This clustering behaviour is a function of localised birth. The offspring are given
the same location as the parent but a random direction. If we set the offspring to be
ejected into the environment randomly or even only a short distance away (radius of
5 steps) then generally the population fails to take off. Only in the most favourable
conditions, e.g. ‘birth value’ set at +1, will the population survive despite this and
then we see a random distribution of organisms rather than islands.

267

Figure 5: Imitial Ran- Figure 6: Rapid For- Figure 7: Growth of
dom Conditions mation of Islands the Main Island
Aeon Main Codes Used by Population
Population 1 Population 2
210 2 3 5 0 1 5 11 15
300 2 3 5 0 1 5} 11 15
4 2 3 0 1 5 11 15
5 2 3 0D 1 5 11 15
6 2 3 0 1 4 5B 6 14 15
11 2 3 0 1 4 5 6 14 15
12 3 b 80 15
13 3 H 0 15

Table 2: Change in Code Use by Two Populations over Time (Aeon = 1000 mi-
croinstructions)

Each population examined uses this basic strategy of islands to success. In any
one population there are usually two or three islands with flourishing populations
and perhaps 20-40 smaller islands of one or a few long lived individuals. However
each population uses a different group of codes for its survival (see Table 2). This
is as expected and constitutes an emergent relationship, a ‘language of survival’
between a population and its environment. All other behaviour is dependent upon
the nature of the organisms and the cluster of codes they process.

The relationship between the clusters of organisms and their environments is
remarkably robust. If the organisms had identified a particulary suitable niche
within the environment, then when the environment is radically changed: such
as being completely randomised after the population has shown some success, we
would expect the population to crash dramatically. This is not the case, and
though there is some set back it is relatively small and does not prevent the march
to success. We can say then that the populations having been born into a ran-
dom environement are completely adapted to such an environment and are not
depending upon localised specific environments of adaptation.

If we look at genetic indicators at a gross level (Table 3) then we see little
change in the distribution of genes governing ALU, movement, reading/writing or
conditional breaking. However if we look at more detail within the genes respon-

AP

Aeon Frequency Percentage Occurrence
ALU | Read/Write | Movement | Conditional Breaks
0| 25.2 25.1 25.2 244
1 25.0 25.2 25.3 24.5
11 || 24.8 29.8 23.9 21.9
12 || 25.0 31.0 24.2 19.8
13 || 27.1 26.0 24.3 22.6

Table 3: Frequency of Gene Groups Governing Basic Functions (Aeon = 1000
microinstructions)

sible for operations on the active register A either within the ALU or by reading
from the environment then we see distinct changes within some groups of genes
within the population. Frequently a gene will be pushed close to extinction re-
ducing its frequency by up to 50 times its starting value. Which genes experience
change cannot be predicted and it is not always the most expected — see Table 4
where in the first case ‘set zero’ is almost extinguished as might be expected, yet
in the next case it actually increases in value and ‘shift left’ is reduced to near
extinction.

Aeon Frequency of Genes (%) Affecting Active Register
Population 1 Population 2
0 = << ++ >> 1 & ¥ Head |[0 = <<+t >> 1 & + Head
[4] 1.56 1.38 1.58 1.57 1.5% 1.56 1.60 1.60 6.32 i.58 1.58 1,57 1.58 1,58 1.57 1.57 1.59 6.31
3 1.30 166 1.62 1,59 1.58 1.66 1.43 1.62 6.24 1.3 1.59 1.52 1.64 1.60 1.62 1.55 1.66 6.38
12 0.01 1.90 0.97 1.89 2.48 1.81 2.46 238 3.11 1.87 0.81 0.18 242 0.65 2.63 1.54 1.56 5.36
13 0.02 2.56 1.02 2.54 1.4 2.55 3.31 1.58 4.13 2.52 0.66 0.02 3.08 0.62 2.45 1.87 1.85 5.02

Table 4: Change in Frequency of Genes Affecting the Active Register (Aeon =
1000 microinstructions)

All these results have been shown using populations without the conditional
breaks being operative. Such organisms can not be Turing-equivalent, but are in
effect highly complex lookup tables. If we make the conditional breaks effective,
then the same behaviour is shown, but only in the most favourable of conditions,
such as ‘birth value’ set at -1 or +1. This increase in difficulty for the organisms
to survive by rendering them potentially Turing-equivalent is as we would expect.

Behaviour at the level of the Individual

It remains only to look at the specific behaviour of a single processor functioning
from the viewpoint of it as a computer. Looking at either the population level
or the individual level cannot give us the full account of how ecosystems like this
function any more than it can in Biology, but it gives us a limited explanation of
what is a truly complex system.

Generally the organisms are to be found in tight loops such as the one illustrated
in Figure 10, but we do also find organisms with a much wider range as in Figure 8.
‘There are also examples of wanderers entering loops and others escaping from them.

Code Microinstruction

3 DEX WRA WRA WRB A&B ©SLB INA ZTB WRB ZTB
14 ZTA REB REB SLB INX EQT INY B|A INY INX
15 DEY DEX NEB A|B DEY WRB INX ZTA WRB ZTA

Table 5: Relevant Chromosomes for Looping Organism

Key
3 6 13 Codo Executod

2t —_— 3 BT Registers rendomised
3
Reglgsr Ve A
6 6 4
Secticn of trail
2. ¥ 20 =
L3 e
5

0
}
43
6
42 13
S v Birth a2
123, - EEH
14 13 1
] 15 5
1l e i
ay o 151 16 16 a2
- 13 14
Y

Figure 8: Wandering Organism

Figures 10 and 8 show the codes executed by each move and the values in registers
A and B. From this and the microprogram it is possible to work out exactly what
an organism is doing. The relevant sections of microprogram or genetic code for
Figure 10 is found in Table 5 and that for Figure § is in Table 6. A key to the
microcode is given in Table 7.In these examples the conditional break instructions
were disabled, so they have no effect.

The loop in Figure 10 and Table 5 executes the following program: Mutation
was by fixed probability of a copying error during reproduction and the resultant
mutation was chosen randomly. The value used throughout the experiments was a
50% chance of a mutation somewhere in the genome. This is of the order suggested
by [Eigen et al., 1982]. There is also a copying error, by which some chromosomes
are curtailed variants of their parents. This is a bug in the code, but a rather
useful one!

Conclusion

I believe what has been shown here is evidence that despite these extremely harsh
conditions, the processor-organisms have displayed survival under selective pres-
sure against the dominant phenotype. The shift in phenotypic peak away from the
dominant indicates evolution proceeding in a classical darwinian fashion. What
was not expected was the rapidity with which these populations adapted and be-

Code Microinstruction

0 WRB DEX EQT REB WRA SLA NEA DEX REB NEA
1 WRB DEY INY DEY WRA ZTA EQT REB INY EQT
3 DEX WRA WRA WRB A&B SLB SRB ZTB WRB ZTB
4 EQT ZOB WRB EQT WRA EQT EQT WRB WRB REB
5 B&A REB DEY ©SRB WRB DEY EQT REB INY B+A
6 DEY DEY DEX WRB SLB DEX INX ZTB REB DEY
10 DEX NEA ZTB ZTB ©SLB DEX B&A NEB ZOB SRB
11 NEA ZTA REB WRB REB REB B|A DEX INB WRA
13 ZTA INX INX ZTA WRA REB REB ZTB WRA DEY
14 ZTA REB REB SLB INX EQT INY BJA INY INX
15 DEY DEX NEB AB DEY WRB INX ZTA WRB ZTA

Table 6: Relevant Chromosomes for Wandering Organism

Microin- Explanation Microin- Explanation

struction struction

A&B A register becomes A AND B DEX Decrement x direction
B&A B register becomes A AND B DEY Decrement y direction
B+A B register becomes A Plus B INA Increment A register
B|A B register becomes A OR B INB Increment B register
A|B A register becomes A OR B INX Increment x direction
EQT Test if both registers are equal INY Increment y direction
NEA A register becomes minus A SLA Shift A reg 1 place left
NEB B register becomes minus B SLB Shift B reg 1 place left
REB Read from the environment intoreg B ZOB Set register B to zero
SRB Shift B register 1 place right ZTA Test A register is zero
WRA Write the A reg to the environment ZTB "Test B register is zero

WRB Write the B reg to the environment

Table 7: Explanation of Relevant Microinstructions

came successful.

It has been shown that under random conditions and with no concept of com-
petition for resources a population of processors can survive and demonstrate in-
dications of evolutionary processes underway. The strategy for survival is to form
colonies from cloned offspring. These colonies are genetically similar, but not iden-
tical, i.e. a converged population. They exhibit a behaviour of looping over a short
range executing a few codes. These codes are peculiar to the development of the
population and their semantics are completely self-referential, i.e. important only
to the colonies survival and having no meaning outside of this. The appearance of
the islands is due to localised birth permitting similar organisms to expererience
similar conditions. These populations are adapted to a random environment not
to specific econiches and they are robust in the face of sweeping changes to their
environment. It is easiest to see these effects on non Turing-equivalent organisms,
but similar patterns can be found in populations of Turing-equivalent organisms
given more favourable conditions.

2H

DO

A=A AND B

B = Shift Left B

Increment A Key
Read into B y a3 Code Executed
B = Shift Left B Stz of Locpl Restrer VeREa
B=AO0ORBEB Sectioncl sl
A=A AND B)

B = Shift Left B

Increment A NextLop -10:14

B=-B 3 14

A =AC0RB

LOOP BACK TO DO

512

Figure 9: Program of Figure 10: Organ-
an Organism Execut- ism executing a Tight
ing a Tight Loop Loop

It has not been shown what happens if the selective pressure is changed on an
adapted population. Indeed removing the selective pressure against the dominant
is likely to return the population to the original distribution. It is not possible
within this system, due to the limits on the population size, to follow the phenotype
shift from one peak to another stable dominant without the population springing
back. If we had computer resources with two orders of magnitude more main
memory than our current sund with 20 Mb, I believe we could follow this complete
shift in the fitness landscape thereby demonstrating evolution in action. However,
as it is, we must be content with an indication of evolution in progress.

Also I have not shown either the effect of sexual selection upon this population
or the effects of different mutation rates. Indications are that neither of these
affects the basic pattern of behaviour.

I am struck by, the at least superficial, resemblance of these patterns of be-
haviour to populations of bacteria on agar plates. Both have in common unlimited
resources, localised reproduction, cloning with mutation and a stategy of restricted
motility. This is at the population level. Previously I have discussed with Pedro
Marijuan, by personal correspondence following the publication of [Davidge, 1992],
the similarity of these processors to bacteria at the physiological level. In that
paper I originally suggested the correspondence between the eukaryotic cell, or
protozoan, and the processor. Pedro pointed out that the better correspondence
would be to the prokaryotic cell, or bacterium. This experiment adds a little more
weight to the view that we might have a very good model in the processor for the
prokaryote.

In forthcoming work I intend to examine the effect on the populations when
some form of limited energy consideration is introduced to the processor.

e

Acknowledgements

I would like to thank Phil Husbands, Tom Ray, Pedro Marijuan and Inman Harvey
for suggestions and discussion. The 3-D display of population density and distri-
bution is due to Homero Rios. The author is supported by an SERC Research
Studentship.

References

Brooks, R. A., Intelligence without Reason, MIT, Al Memo No. 1293, April 1991.

Burks, A. W., H. H. Goldstine and J. von Neumann, Preliminary Discussion of

the Logical Design of an Electronic Computing Instrument, Institute for
Advanced study, pt 1, vol 1, Princeton, NJ, 1946.

Cline, B. E., Microprogramming Concepts and Techniques, Petrocelli Books, 1981.

Davidge, R., Looking at Life, in Toward a Practice of Autonomous Systems: Pro-
ceedings of the First European Conference on Artificial Life, edited by F. J.
Varela and P. Bourgine, MIT Press/Bradford Books, Cambridge, London,
1992.

Eigen, M., W. Gardiner, P. Schuster and R. Winkler-Oswatitsch, The Origin of
Genetic Information, in Evolution Now: A Century after Darwin, edited by
J. Maynard-Smith, pp. 10-33, W. H. Freeman, San Francisco, 1982.

Fontana, W., Digital Chemistry, in Artificial Life: Proceedings of the second work-
shop on Artificial Life, edited by C. G. Langton, J. D. Farmer, S. Rasmussen
and C. Taylor, Addison-Wesley, 1992.

Harvey, I., Evolutionary Robotics and SAGA: the case for Hill Crawling and Tour-
nament Selection, 1992.

Koza, J. R., Genetic Programming: A Paradigm for Genetically breeding Popula-
tions of Computer Programs to Solve Problems, STAN-CS-90-1314, Stan-
ford University, 1990.

Langton, C. G., Computation at the Edge of Chaos: Phase Transitions and Emer-
gent Computation, Physica-D, 42, 12-37, 1990.

Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, 1967.

Packard, N., Evolving Bugs in a Simulated Ecosystem, in Artificial Life: Pro-
ceedings of the first workshop on Artificial Life, edited by C. G. Langton,
pp. 141-156, Addison-Wesley, 1989.

Rasmussen, S., C. Knudsen, R. Feldberg and M. Hindsholm, The Coreworld: Emer-
gence and Evolution of Cooperative Structures in a Computational Chem-
istry, Physica-D, 42, 111-134, 1990.

Ray, T. S., An Approach to the Synthesis of Artificial Life, in Artificial Life:
Proceedings of the second workshop on Artificial Life, edited by C. G.
Langton, J. D. Farmer, S. Rasmussen and C. Taylor, Addison-Wesley, 1992.

23]

