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Abstract

We study the effect of the association of two formal metabolic units, each of which
contains a metabolic chain with one negative feedback loop, on the asymptotic
stability of their steady state. Specifically, we assume that: (i) metabolic chains are
of the Yates-Pardee or Goodwin type; (if) when metabolic units are associated, then
metabolites can passively diffuse from one unit to the other. We show that (i) the
~ associated system has a unique steady state with positive concentrations; (ii) the
association can result in an increase of the asymptotic stability domain in the
parameters space. We conclude that association of metabolic units can be a source
of stability of metabolic networks.
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1. Introduction

One of the most striking properties of biological systems is the increase in their
apparent complexity during ontogenesis and phylogenesis. Another important feature
of living systems is the stability of their dynamics, as was pointed out by Claude Bernard
in the last century, using the concept of homeostasis. Although these notions are difficult
to define in a rigorous manner, they can be viewed as very general properties of living
systems. On the contrary, an increase in the complexity of an artificial system often
results in a decrease in its stability domain. Therefore the question of the link between
complexity and stability in living systems, and its possible implications in ontogenesis,
phylogenesis, and physiology of organisms, need to be clarified.

The stability of biochemical systems has been the subject of numerous studies,
based on kinetic and thermodynamic approaches (see for instance Walter, 1972; Sava-
geau, 1976; Stucki, 1978). One of the most studied biochemical systems consists of a
metabolic chain with one allosteric negative feedback loop, and is generally referred to
as Yates-Pardee or Goodwin metabolic chain (Walter, 1969(a),(b); Goodwin, 1976;
Savageau, 1976; Rapp, 1976; Dibrov er al., 1981(a),(b)). When the length of a Yates-
Pardee metabolic chain is increased, then its stability domain is decreased: in some way,
we could say that an increase in the complexity of the metabolic chain resultsin a decrease
of its stability.

From a different point of view, G. Chauvet (1987, 1990; 1993, to appear) suggested
that the self-association of two formal metabolic units can result in an increase in the
stability domain, especially when one unit cannot synthesize one essential metabolite
and receives this metabolite from the other unit. Such a property would correspond to
an increase both in complexity and stability of a formal biological system. The question
arises whether this unusual property can be verified in large classes of formal biological
systems on one hand, in real biological systems on the other hand. :

In the present work, we study the relation between association and stability in the
case of two relatively simple "metabolic units". More precisely, each metabolic unit
includes a Yates-Pardee metabolic chain, and association results in diffusion of meta-
bolites between the two metabolic units. The time evolution of the metabolites
concentrations is described using an ordinary differential equations (ODEs) system. First
some properties of one metabolic unit, i.e., of a Yates-Pardee chain, are recalled. Then
the existence and uniqueness of a steady state with non-negative concentrations, and the
asymptotic stability of this steady state, are studied in the case of the associated metabolic
units,

2. Models of metabolic units

2.1. Model of a metabolic unit

We first consider one metabolic unit including an unbranched metabolic chain with
one allosteric negative feedback loop (Figure 1), a system which is similar or identical
to those studied by several authors and is known as Yates-Pardee or Goodwin metabolic
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chain (Walter, 1969(a),(b); Goodwin, 1976; Savageau, 1976; Rapp, 1976; Dibrov ez al.,
1981(a),(b)). Every enzyme E;, whose substrate is P;, i =1 70 n, is michaelian, while the
first enzyme E,, whose substrate is S, is allosteric.
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Figure 1. Model of a metabolic chain with one allosteric negative feedback loop (non-associated
systemy), in the case n = 4. We assuime that this chain is included in a "metabolic unit" u, e.g. a cell.

The following specific assumptions are made, as was proposed by Walter (1969(a)):

(i) the concentration P; of the corresponding metabolite is far lower than the
Michaelis constant K, ; of the enzyme E;, i = 1 1o n, so that the velocity v; of the reaction
catalyzed by enzyme E; can be written (V. ; being the maximal velocity):

P,

)
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v& max,:Km'i +P‘ Km_j i o

(ii) the velocity of the first reaction §, — P, can be written o/(1 +K(P,)"), u, K
and o, being positive constants. We assume that the concentration of the substrate S is
constant.

Then the evolution of the concentrations P; of the corresponding metabolites can
be modeled by the following set of equations:

dP
O P —2
dr - 1+ KPP,
¢y
dp; .
E={Z‘-_IPE_I—CZ;PI- l=2[0ﬂ

2.2 Associated units

Let us consider two associated metabolic units, namely « and u~ (Figure 2).

Notations are similar to those used for a single unit, the parameters and metabolites
concentrations in unit #~ being written with a star (*) superscript. In Figure 2 solid

" horizontal arrows represent biochemical reactions, dashed horizontal arrows indicate

allosteric feedback, and vertical arrows represent transport of a metabolite P; from one
unit to the other.
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Figure 2. Model of two associated metabolic units, in the case n =4.

In this study, we shall further assume that this transport consists of passive diffusion
between two compartments, with a constant coefficient B;. Then we shall write the
following ODEs system for associated metabolic units;

= - P, +————+ B, (P -

ar 1+K(P,,)"+B (P =P

dPi & .
'E=0Ei_IP£_I—GLPI+BI(Pi -Pl) t=2[0n

. ; 2)
dPl Ly ao % (
dr =-o,P, .. =+ By(P,—Py)
1+K° P

aP; . . .. . :

Systems (1) and (2) will be referred to as non-associated and associated systems
respectively. It can be noted that all parameters in these systems are non-negative.

3. Existence and uniqueness of steady state

In order to find the steady states of the non-associated and associated systems, we
consider » equations (1) and 2» equations (2) respectively, where the left-hand members
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arereplaced by zero. We shall study only steady states with non-negative concentrations.
The existence and uniqueness of a steady state (Py, P;, ..., Py) of the non-associated
system (1), with every P! positive, are easily demonstrated from the scalar equation:

o0 K@Y +0,P -0, =0 3)

The case of the associated system is more complex. If we assume that every o;
and every o, i =010 n, are different from zero, it can be proved, using an adequate
change of variables and matrix algebra considerations, that there exists a unique steady
state with non-negative concentrations.

Moreover, if there exists one i € {2,3,...,n — 1}, such that o is equal to zero (ie.,
if there exists one enzymatic block in unit %), the same result holds, provided that the
corresponding f; is different from zero.

4. Stability analysis of steady states

4.1. Analvtic study of the non-associated system
Let us linearize the system (1) in the neighborhood of the unique steady state and
obtain the first approximation system. Hence, the characteristic polynomial is:

£ = _ﬁl(ma,.)m"ffa,. @)
i= i=1

. where Y= ouk (P,‘,’)“'llfl +K (P )2 corresponds to the non-linear term in system (1).

Let us apply the criterion of Liénard and Chipart for asympiotic stability (Gant-
makher, 1959), which is more simple than the Routh-Hiirwitz criterion. For n <2, the
steady state is always asymptotically and exponentially stable. For n = 3 (respectively
r =4), a domain of instability exists, for example with =9 (resp. L =3).

4.2. Analytic study of the associated system

The case of the associated system is more complicated but it is possible to follow
the same calculations.

For n =1, the roots of the characteristic polynomial (eigenvalues) are real and
negative, so that the unique steady state is always asymptotically stable. If the system
is symmertrical, i.e. if oy = 0, 0, =0, L =W, K =K, then the two eigenvalues will be
Ay =—(o, +7v) and A, =—(0y, +7+2B,), so that the o-stability of the system (see Bouriés,
1986) will remain constant.

For n =2, we obtain the characteristic polynomial

L) =a) +a X +a ) +a)+a, (5)

where the coefficients a@;, { =1 to 4, are positive (their detailed form is given in the
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Appendix). The criterion of Li€nard and Chipart leads to the necessary and sufficient
stability condition:

2
a,a,a,—ala,—aya: >0 (6)

This latter condition is not satisfied when L is large enough (i = 100). Because |
is the Hill coefficient or so-called "molecularity” of the allosteric reaction, this latter
case is not realistic from a biological point of view.

4.3. Numerical study of non-associated and associated svstems

Asymptotic stability of non-associated and associated systems was assessed by
numerical resolution of systems (1) and (2) respectively, in the case » = 4. Parameters
were chosen as follows: K =K =1, u=p" =5, oy =0, =1, o = 1, 0, = 0 (we assume
that one enzymatic reaction is suppressed or inhibited in one of the two units).
B, =B, =B, = B, = 0in the case of the non-associated system, B; =B, =B, =B, = L inthe
case of the associated system.

The asymptotic stability domain was studied:

(i) in the oy, 0,-plane (Figure 3), with 0 = 0y = 50, 0t = 0, O = Ol

(ii) in the 04, 0,-plane (Figure 4), with o, = 1, o, = 0, 0, = 0.
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Figure 3. Asymptotic stability domains in the oy, o-plane in the case of (1) the non-associated
system, and (2) the associated system. Note that in both cases the stability domain is outside the
closed line, while instability is observed inside this line, Parameters values are given in the text
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Figure 4. Asymptotic stability domains in the oy, o,-plane in the case of (1) the non-associated
system, and (2) the associated system. Note that in both cases the instability domain is between the
two branches of the corresponding curve. Parameters values are given in the text.

In the case of the non-associated system, an asymptotic stability domain is observed
in the oy, a,-plane outside a closed line, while instability is observed inside this line
(Figure 3). These results were confirmed using the criterion of stability of Li€nard and
Chipart, as in part (4.1.), and closely match the results obtained by Chauvet and Girou
(1983). In the oy, o,-plane, the instability domain is between the two branches of curve
(1) (Figure 4).

In the case of the associated system, the "instability domain" in the o, 0,-plane is
still present, but its area is reduced. More precisely, the associated system "instability
domain" (bounded by line (2)) is included in the non-associated system "instability
domain" (bounded by line (1)). The same result holds in the oy, 0;,-plane.

5. Discussion

In the present work, we compare two different ways by which a metabolic chain
with allosteric feedback may become more "complex”: (i} an increase in the length of
the metabolic chain, i.e. in parameter z; (ii) the association of two metabolic units,
resulting in diffusion of metabolites between the two units. The effects of an "increase
in complexity" on asymptotic stability differ radically from one case to the other, If the
length of the metabolic chain is increased, then the unique steady state solution of the
non-associated system becomes "less stable”, as was already pointed out by several
authors (Walter, 1969(a),(b); Dibrov et al., 1981(a),(b)). For instance, when n equals 1
or 2, the steady-state solution is asymptotically stable whatever the parameters values;
if n equals 3, instability can occur when the "molecularity” p of the allosteric reaction
is greater than 8§ (which is rarely encountered in real biological systems); if # equals 4,
instability can occur when L is as low as 5.
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When two metabolic units are associated, the domain of asymptotic stability may
be either (i) decreased, as was shown when n equals 2 in a particular case (which is not
very realistic from a biological point of view), or (ii) increased, as was shown when »
equals 4 when one enzymatic reaction is suppressed in one of the metabolic units. When
n equals 1 and when the system is symmetrical, the a-stability of the system remains
constant after association. Therefore, the self-association of the two metabolic units can
be a source of stability, if some conditions are fulfilled. This finding can be viewed as
non-trivial, because an increase in complexity of artificial systems often results in a
decrease of their stability domain. Hence, we think that the approach presented here may
be a starting point for further work in understanding why an increase in complexity, due
to association of metabolic units, can be a source of stability. Moreover, we believe that
this approach should be applied to real biological systems, e.g. to the association of
micro-organisms, or to the mitochondria or chloroplasts inside eucaryotic cells.

Appendix
Coefficients of the characteristic polynomial of the associated system (z = 2)
a,=1>0,
a, =0, + 0, + 04 + 05+ 2(B, +B,) > 0,
@, = (04 + 05) (05 +05) + (0, + 0, + 0 +00) (B, + )
Hou +B,) (0 + ) + (07 +B,) (05 + ) + 2B,B, + oq v+ 0qY >0,

4= 0B (05 + By) + 0GBy (06 + Br) + (0 + 0) (05 + By) (05 + B+ (06 + 05) (04 + B) (0 + B)

+00 B, (04, + By) + 0,B(0n, + By) + o, Yo + 0+ By + B,) + oY (0 + o, + B, +B,) >0,
8, = 0,050405 + 0, 0,048, + 0 05,00B, + 0, 0B, B, + 01,0008, + 04 03B, B, + 0,0505B, + 0L,0GB, B, + oG0P B,

+04(04 + By) (05 + B) Y+ 050 + By) (0 + BY + 04, Bav+ 04 BBy + eqoyy > 0.
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