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Abstract

Political Life on a Lattice: Toward an Elementary Theory of Nonlinear Politics

A political svstem is construsted using a probabilistic cellular automata model dubbed the Voter Modei.
We outline the formal properties of politieal life on the lattice as a collection of individusls whera each individual's
preferencs or attituda and the state of the system can be precisely koown. On g lattice individuals are assumed to
interact according to microscopic political interaction laws. These rules determine at every instant of time what the
preference or attitude of each individual will be at the next instant of time, depending on the current preference or
attitude of the other individuals. The core of the paper asks what the global. macroscopic properties of such a
system of interachng individuals might be.

We simulate two political worlds using a stochastic Voter Model. One reflects a political reality in which
decision makers have equally weighted preferences or attitudes which are held with equal salience. Power is
uniformly distributed. We show that in finite time the outcome of specific interactions results in a macroscopic
time-series which indicates deterministic chaos. The political universe defined by lattice models including elites
diminishes the presence of chaos and allows long lived groups of voters to Live in clusters. Within the rules of the
stochastic Voter Model elites appear to stabilize influence. We speculate on the meaning of these simulations for
political theory. With modifications, we suggest. it is possible to investigate how specific elites emerge,
communicate giobally. change their relative shars of politiczl power, move through time and space to gain political
support, form coalitions. and eventually take control of complex political systems. With methods under development
complex political change can be examined and anaiyzed for critical predictive conditions.
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1. Iatroduction

Political science is concerned with explaining political things. Politics, no matter whether at the communal.
state, national. or international level, is always the result of interactions among individuals. The individuals are all
members of the respective political collective. While some individusals may be equipped with more power and attain an
life status. zven elites are interdependent. There is no political process that would not be driven by a large number
of direct or indirect interactions among individuals. Presidents bases their decisions on interactions with their advisors.
Senatcrs chat in the balls before key votes. Congressmen aod congresswomen caucus. And this behavior is not
fundamentally different from the way a typical voter bases her decision, say to support 2 Republican or & Democratic
candidate in an election based on interactions with individuals in her environment.

Lat us then. for the moment. accept this view that politics is the result of elementary interactions among a Jarge
number of individuals. Let us further assume that each individual interacts with other individuals according to the same
rules and that these rules, which we will call microscopic interaction laws, are somehow known to us. These rules may
be thought of as determining at ¢very instant of time what the state (preference or attitude) of sach individual will be at
the next instant of time. depending on the current state of the other individuals. For simplicity we assume a one-bit rule.,
thatis each individual can only be in one of two states, on or off. Demoerat or Republican, pro-abortion or anti-abortion.

The system then is the collection of all individuals. and the state of the systam at any instant of time is given
by specifving each individual’s state at that time. Depending on the rules of interaction, the time evolation of the system
may be deterministic or stochastic. It is then natural to ask what the global. macroscopic properties of such a system
of interacting individuals zre. Some qusstions to be further elaborated here and in subsequent ragearch are:

- How fast can ths system, starting from some given initial state. evolve into a qualitatively different state? Are
there initial states trom which the development to a different state is catastrophic, so that some macroscopic variable (e.g.
the fraction of Democratic. & policy space or geographic boundary betwesn those pro and con) undergoes a rapid change?

- Are there initial states thut evolve eventually into a state where all individuals are pro. i.e. into a uniform
equilibrium state? Are there cther equilibrium states which the system may approach after long times? Are there initial
states from which the system never settles down into an equilibrium state?

- What is the generic behavior of the svstem at Jong times? Are there statistical properties and patterns (averages,
fluctuations, boundaries betwesn pro and con domains) that are independent of the details of the initial state and therefore
characteristic of some microscopic political interaction law?

- Do some of these patterns persist under a modified microscopic interaction law and, thus. are universal for
an whoie class of interacnons?

- Which macroscopic variables of the svstem are predictable in the sense that the variables’ initial values uniquely
determine the values at any later time, or allow of an estimation of later values with less than ¢xponentially diverging
error bounds? Which variables, by contrast, can be estimated only with exponentially diverging bounds and thus qualify
for chaotic behavior in the sénse of nonlinsar dvnamical systems? Can such variables lead the way to find some
autonomous global dynamics involving chaotic attractors?

- Do the dynamics lead to emerging hierarchical structures which may correspond to political elites. alliances,
or political units (made up of many individuals) that interact with each other similarly, but with some renormalization,
10 how the individuals interact?

- How does such a system compare with real palitical life. with data from specific political events, and with
long-term observational data (time serfes) of various political variables within various political contexts?

While these questions are primordial for any understanding of complex political processes. the fact is that they
have never been asked in political science and answers are nonexistent. The study of politics has lagged behind other
disciplines in developing dvnamical models beyond linear. special-purpose models. Examples for the latter are models
of riots (Salert and Sprague, 198Q), arms spirals, and short-term election forecasts. The deficiency has become
particularly obvious and acute during recant pelitical events in Europe. the Soviet Union, and the Middle East. These
cvents and rapid macropoliticai changss were s unexpected to any political scientist as the 1985 San Francisco earthquake
came unpredicted by any geologist. Our point here is not that developments such as the ones in Eastern Europe and the
Middle East could have heen predicted in detail if better models had been avsilable, The point is that despite the
unpredietability of such developments there may be definite pattiams in their cccurrence which originate from how
individuals interact ar the microscopic ievel: there may be well-defined relations between the time scales on which
short-term prediction is possible and the characteristics of chaotic evolution at long times: there may be indicators of
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incipient macropolitical changss; and there may be a wealth of macroscopic variables which are predictable at long times
sven though the svstem state is not.

Below we briefly describe typical properties of =z lattice model (Sec. 2), and then discuss the relation of
dynarnical lattice models to earlier concepts and frameworks in political behavior (See. 3). Then we procesd to illustrate
the dvonamical properties of a stochastic version of one such model, the Voter Model, and how it is influenced by tha
presence of elites (Sec. 4). We conclude and give a forward look at work some of the work to come (Sec. 5).

2. Microscopic Dynamics: Lattice Simulations
2.1 Conceptual Framework

A lattice is 2 periodic d-dimensional array of discrete sites. Ideally the number of sitss, N, is infinite. On the
computer it will be a very large number, say N~10° The lattice is a primitive structure analogous to discrete sample
space. A site will be labelled by an index i or j as nesded. The lattice may be square. trianguiar, or have yet some other
geometric structure of the unit cell. On a square lattice. each lattice site has 2d nearest neighbors, i.e., immediately
adjacent sites which share 2 common bond. and the size of the unit cell is characterized by the distance a between such
adjacent sites (Fig. 1). Each site represents an individual decision maker which we call a voter. The voters are spatially
arranged to reflect physical or geographic distance. Thus, voters are fixed in place: there is no migration. No other
variables exist at this level of analysis. The lattice we consider here will always be a square lattice in two dimensions
{d = 2) unless stated otherwise.

To lattice site i is associated an indspendent variable s, which defines the state of the individuali (i = 1, 2.
....N). We assume a binary state space Where the varigble 5 takes on one of two values. If s, = 0 we say the site or
votsr is a Democrat (prochoice, or ...).! If 5 = 1 we cull the voter a Republican (anti-choice, ete.). Although
individuals remain in fixed physical locations their partisanship, or issue position or idealogy, may change as a resuit of
interactions (to be specified below) with other voters on the lattice. At this conceptual stage thers are no hierarchies and
hence there are no elites, candidates, governments, nor interest groups. Without governments, candidates, or political
parties. there are no elections. This is the most primordial political world possible.

2.2 Configurations

The collection of values (s, Ss, .... Sy) is called a configuration of the system, and defines the state of the egtire
svstem. There are 2" states of the entire system. When we consider the configuration of the system ata particular time
t, we will denote the stawe by (5,(1), S:(1), ... su(t)). Having defined the staw of the system, we can determine the
properties of the system. Aggregated properties such as the number of Republican and Democratic sites, the average
partisanship of a site ((1/N) T, 5), its variance may be readily evaluated. Any such aggregated property is of the form
F(s;, 5o .... ) where F is some given function. Additional, spatial-temporal propertiss. including hierarchical aspects
of the entire system as they may emerge. will be considered later on. Finally, in order to specify the lattice of voters
as a dynamical system, we bave 1o define the time evolution (dynamics). This is done by assuming that time is a
discrete variable and by specifying how the current state of the system, &t time t, determines ths state at the next instant
of time, t+1. A general time evolution is specified by

s(t+1) = G (4 s, oo st (=100 N (1 .
where G, are given functions of time t and the current values sL(D), ..., s(t).? Thus, starting from a given ipitial state

If a more refined description of the voter is desired. this can gasily be accomplished by letting s ke the
additional value of 0.5 to designate a partisan independent. or by letting s; rake on a continuous range of values or
aven vector values,

I A more general model would be  s(t+1) = G (t. s(0), s(i-1), )

where s@) z(s |icual
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(5,{0). ..., sq(0)) at time t = O, Eq. (1) by repeated application completaly determines the state (5,(B), ..., §.{t)) at any
later time t. Whils the G.'s may seem like an innocent collection of functions. 1t contains all possible "governing”

systems, (2%)", which in our simple binary world is (219" | For instance. the ussignment

s+1) = s G=1,..N) @

(i.e.. G5\ 84y ..., Sx) = &, for all i) would mean that every site retains its previous value regardless of the vaiue at any
other site. It amounts to a collection of noninteracting individuals and leads to a trivial time evolution. At the opposite
¢nd, the assignment

S{t+]) =5 (i=1, ..., N) (3

(i.e., G5y, Sz vy ) = Su, for all i) would mean that all sites become Democratic if site 233 is so. and become
Republican if site 233 is Republican. It would model a strongly, but trivially interacting system of individuals who follow
an influential at site 233 (action at a2 distance).

The stata-svolution functions G, refer to the preference of each individual. Since the function G, deseribes how
the stats of one individual evolves as a resuit of its interaction with other individuals, we will refer to the G’s also as
interaction law. Eas. (2) and (3) are examples for interaction laws that do not (explicitly) depend on time t. The time
evolutions we are interested in assume interaction laws that are time-independent. uniform, and local.

Uniform means that G, depends on i in the same way for all i’s. that is contingent only on position on the lattice;
local means that G, depends onlv on more or léss close neighbors of i. That is, the G; is of the general form

Gilsyy voor 5) = 85y Sjiaw ++++ S (4)

WHEre jims «+s Jup identifies the n neighbors which influence i. The function g and the neighbor functions j;. cinils
completely determine the time evolution of svery individual by Egs. (1) and (4). In the following subsections we discuss
some particular choices for neighborhoods. associated functions g, and their resulting properties for long-time behavior.
The time evolution (1), defined on the state variables s(z) on the lattice, is an example of a cellular automaton.

2.3 Model I: Deterministic Majority Law
The simplest example for an interaction law in which each individual interacts in the same way with its neighbors is

the deterministic majority rule law. [t makes each site adopt the vaiue prevailing among the site and its 4 nearest
neighbors on the lattice. The interaction law G, for this electoral behavior is given by

G, (s, ((+1)s 5 (£+1)) = [ e i 5

where

}I -Jl = V(‘r“ = :J‘J- N (yg - y)- (6)
is the Euclidean distance batween sites i and j, with location (%,y)) and (x;.¥,). respectively. The summation in (3) is over
all sites j whose distance from i is less than or equal to spacing and,therefore, includes thz site i and its 4 nearest
neighbors (cf. Fig. 1). Thus, Eq. (5) savs that the voter ar site | will be Republican at time t + 1 if. among i and its
4 pearest neighbors. at least 3 are Republicans at time t; else it will be Democratic. Since the sumrmation condition
always examines 3 sites. no ties can occur and the interaction law is symmetrical with respect 10 partisan influsnce.
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In tarms of the function g introduced in Eq. (4), the majority law (5) can equivalently bs expressed as

Vif (& + Sy = * 8] 23
g(sr ’ -5}1(;’ yeee3 5}“;)) L { a ik ¢ ) sl )

where 3,(i). ..., j.(i} is i’s neighbor to the North. ..., West, respectively. Eq. (7) manifests uniformity of the interaction
law by the circumstance that the expression {...] depends on the state of site t and of i's neighbors in the same for all
i: and it shows that the local neighborhood of any site i consists of i and its 4 nesrest neighhors.

To illustrate how the time evolution defined by Eq. (5) operates. we consider the fate of a chosen site i, starting
from some given initial state of i, its 4 nearest neighbors, and their respective nearest neighbors. over a sequence of two
time steps. This is done in Fig. 2 in which we have chosen the initial state to be 0 for the "central” site | and its 4
nearest neighbors, and 1 for the 8§ “peripheral” sites. In the first time step, the interaction of the 4 neighbors of i with
the peripheral sites leads 10 a conversion of the 4 neighbors into Republicans, leaving i Democratic. In the second time
step, also the central site i becomes Republican.

This illustrates how, in the course of time, a voter is affected by voters outside the range of the nearest-neighbor
interaction law (5). Indeed, had we chosen the voter to the Northwest of i to be Democrartic instead of Republican at
1 = 0. then i would have remained Democratic at t = 2, More generally, the state 5(t) will be influenced by the initial
states s,(0) of all sites j for which the inequalities

iyi - Y; + L‘J - x-){ 5 fa (Sa)
ly;-vi-(x-x) = (8b)

hold (t = 0.1.2,...). Thus, despite the simplicity of the interaction law (5) and its local nature, the long-time behavior
of the state of any given site i depends very sensitively on the initial configuration of the whoie system.
2.3.1 Boundary Conditions

The long-time behavior raises the question how the majority law (5) is implemented at the boundary of the finits
lattice, as we have it in anv computer simulation. The answer is that, on a lattice consisting of N = N’ - N’ sites, one
usually imposes periodic boundary conditions by identifving the points (%, + N’a, v)) and (x,, y; + N’a) with the point
(x., ¥, This makes the finite system fres of boundaries and the time evotution, Egs. (1) and (5), well-defined for all
t. Alternatively, one may keep (5) at the boundary and restrict the summation to include only the actually existing nearest
neightors. which amounts to introducing a Democratic bias at the boundary because if i has only 3 or 2 nearest neighbors
it is hardar to satisfy the cendition that the sum over s(t) be = 3. Or one may choose to replace the condition

Y s5;m=3 (9)
ii- 2z @

n {3} by

Y s;0=2 (10}

i-flca

when i is a boundarv site. which weakens the Democratic bias at the boundary. For a sufficiently large lattice, however,
such different choices of boundury conditions vield essentially the same results for the time evolution from u statistical
viewpoint. In the sequel we therefore will assume periodic boundary conditions, for simplicity, unless stated otherwise.
Another effect of the fnitensss of the lattice in computer simulations is that it makes the time evolution nominslly




periodic. This is because a system with N sites can only be in one of 2¥ different configurations and thus will have to
be back in an carlier configuration after 2V time steps at most. But for N -~ 10°, as we will be interested in, 2 is
effectively infinite. That is, for most initial states. the time evolution accessible in a computer experiment will not show
any such peniodicity due to the finite size of the system but will resemble the evolution on an infinite lattice instead.

2.4 Variants of the Deterministic Majority Law

Fig, 3 gives an idea of what the time evolution on a large lattice looks like for an interaction law similar to (5).
The interaction underlying Fig. 3 is the extended majority law in which site i. the 4 nearest neighbors of i, plus the 4
next-nearest neighbors of 1 are examined in order to determine the value of
%.n- 1hus the extended majority law amounts to replacing (5) hy

1 #F 3, 5025
G, (8 (¢+1) sy Sy (@¥D1)) = k2 vZa L
O else

Sometires the neighborhood used in (3) is called a von Neumane neighborkood (nearest neighbors only), and
the one used in (11) is called 2 Moore neighborhood (nearest and next-nearest neighbors). Fig. 3 provides an instance
of where the initial configuration evolves quite rapidly into an essentially stationary configuration.

An interssting distinction between a von Neumann and Moore neighborhood definition is the likely occurrence
of same-type sites within an initial random configuration, In Figure 3. the small black squares represent stable partisan
(sither Democrats or Republicans). The initial allocation of such stable partisan groups within a von Neumann
neighborhood definition is approximately 35 percent, roughly 18 percent for each of ths two partisan groups. In (3)
governed by a uniform random assignment this initial allocation is likely to increase as the process of voting continues.
Hence the asymptotic state of & von Neumann based voter rule is likely to maintain a sizable mirority. A Moore
neighborhood definition tends to homogeneity in that stable groups are not invasion proof.

2.5. Model HI: Stochastic Majority Law

The Voter Model was first suggested by Clifford and Sudsbury (1973) and independently by Holley and Liggett
(1975) and May and Martin (1975). The voier model converges to complete consensus ind < 2. On the surface, the
process reflected by the Voter Model is trivial since at some time. t. the voiers converge on & single opinion or belief.
ur the state does not change afier 1 (Durrett. 1988). Yet with modifications and by not concentrating on the asvmptotic
results. the stochastic rule underlying the Voter Model we believe can reflect some interesting political attributes of
individuals and give us insight into political systems in which such voters exist. The addition of a stochastic component
to (5) produces the Voter Model (Liggett, 1985: Durrett, 1988).

1 if e ( s =z3)
Gi (S‘- U"'l)q---’ Sy (t"'l)} = { z ﬁ'ﬂE$f-T : (12)

agam where

=Gl o=t = 2 - O - yr

3.0 Dynamical Lattice Madels and Political Behavior
3.1 Mass Electoral Behavior

Can political life be the product of simple, primitive rules of interaction? Cell space models have been used in
physics (Heermann. 1990) , chemistry and biclogy (Gutowitz, 1991; Forrest, 1991). uad o 2 more limited degree in the
sconomic and social sciences to investigate the ecological structure of behavior (Hayek. 1937: Haken 1975. 1983;
Coucelius. 1985, 1986: Scheiling 1971, 1978: Axelrod. 1986: Cowen and Miller. 1920).
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Again, we assume that politics evolves from numerous, local interactions, too numerous to intuitively anticipate
the outcorme. By using "voting rules” on a lattice. enough interactions batween decision makers can replicats interesting
real political situations. We know that 2 highly ordered system evolves from what is essentially a random configuration
rClifford and Sudsbury, 1975) though the specific evolved configumtions are themselves apparently random aad are
highly sensitive to initial conditions (Durrett, 1988). Thus when { 12) is applied to a randow initial configuration. these
rules behave in a fashion which is completely dependent on the initial concentration of Democrats or Republicans. (See.
Fig. 4 here)

Although it is known that a systzm is likely to converge to a homogeneous configuration under this rule of 2
Voter Model. it is not clear from prior research is the manner ia which the convergance takes place. Figure 4 shows
the long-term behavior of two separate runs of the Voter Model starting from very similar initial conditions. The upper
trace starts from a randomly distributed population with each sits having an initial probability of 0.50 of being assigned
a 1 as the site valus. The remainder are assigned 0. The lower trace is similar except that the initial probability of
assignment of a value of 1 1s 0.55.

The time paths of the two runs of the Voter Model could not be more different. Both converge on homogeneous
values, but the outcomes are opposite. The upper trace, starting from un evenly matched distribution. converges on all
1's in the lattice, while the lower trace, with an excess of 1’sin the lattice at the outset. converges on all zeros. A choice
is made. The long-term hebavior of the system approaches either all 1’s or all O’s.

Figure 4 contains another feature of intersst. Both of the traces are statistically self-similar since they scale according
to & power law function (Feder 1988: Krassa and McBumett 1991: Schroeder 1991). In fact, they closely resemble
random walks, though Durrett (1988) proves that they are not. “The initial analysis of the gross behavior of this system
of individual intsractions provides us with a number of puzzles: a well dafined sat of individual interactions. when
considered in its aggregate behavior, follows an indeterminate path to its final destination.

Can the eventual outcome be determined in advance by the initial distribution of sites in the lattice? The simple
stochastic Voter Model suggests a connecrion hetween the micro-level, the state of individual sites, and the macro-level,
the configuration of 1’s (or 0’s). How does the aggregate time series converge on the equilibrium? Does this model
converge in some orderly fashion that will allow prediction? Or, does this system behave in some erratic manner en routs
10 its equilibrium? Indeed. can we divine the micro structure of this process from the aggregate output?

In this section we examine the dynamics of the upper trace. This trace converges on a homogeneous distribution of
all 1’s in the lattice. We begin by reconstructing the phase space using the time-delay method (Packard. et al. 1980;
McRBurnett, 1991). The reconstructed phase portrait is shown in Figure 5. To reconstruct the phase space with a singie
clement time series a lagged value of the series is generated. The reconstrustion of the phase space is accomplished by
plotting the lagged value of the series against the present valus of the series. In Figure 5. a 20 time step lag is used.

Figure 5 contains a pair of equilibria. One is in the lower left comner and the other is in the upper right comer of
the figure. This strongly suggests that the aggregate dynamics from the Voter Model are not regular, nor will they be
zasy to describe. This phase portrait contains miore than 2750 points, so the motion aboul the attractors can not be
considered to be transient: the attractor in the lower [eft corper contsins approximately 1000 points. This pattern 1s
repeated for the time series not shown in phase space. The second series (the series which converges on all O’s) has a
phase portrait that is very similar; it coatains two equilibria and the orientation of the phass space is from SW to NE on
the graph. The dynamics in the phase space suggest that the underlying attractor may be a strange attractar {Echmann
and Ruelle, 1985).

The chape of attractors in low dimensional phase space can be recoverad using the phase space representation from
an appropriately lagged univariate time series (Packard et al.. 1980; Nicolis and Prigogine, 1989). This result allows the
use of the aggregate time series to analyze the dypamic properties of the time series. The dimension of the attractor ¢an
be measured in 4 number of ways. A measure that is computationally officient for a discrete time series such as this one
is called the correlation dimensicn (Nicolis and Prigogine.1989). The correletion dimension provides a quantitative
description of the rate of divergence of nearhy points in the phuse space. For many attractors, the correlation dimension
is known to scale as a power law fuaction. That is

Ciny =r 113)
or. in other words. the dimension of the attractor is determined by the slope of la[Ci1] versus In(r) in « purticular range
of r (Nicolis and Prigogine. 1989). This relation is
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in C(r) = d%n (r). (14)

The procedure then is to calculate C(r) for radii varying from O to that sufficient to cover sl points in the phase space
for successively higher dimensions. The relation between In[C(1)] and In(r) can be seen graphically in Figure 6 where
the correlation integrals for dimensions 2 through 20 are plotted for the phase portrait of aggregate output from the Voter
Modsl.

The slope d from equation 4 is estimated using bivariate regression from the various dimensions over the regions in
Figure 6 that are approximately linear. It is the range of linearity that allows the inference of the dimension of the
attractor. The slope is calculated for each dimension. If the slopes reach a saturation point, i.e., become parailel as the
dimension increases, then the saturation point is interpreted to be the dimension of the attractor (Nicolis and Prigogine,
1989; Grassberger and Proccacia, 1983; Moon, 1987), Where the slopes fail to saturate and the correlation integral scales
according to the relation

In C(t) = d*In (n) 15)
whete 1 is the dimension in which the correlation integral is constructed, the dynamical process is understood o be
Gaussian white noise. This relationship is represented by a 45 line in the plane. This clearly differentiates the two
processes that might be expected. Confirmation of the existence of the attractor is griven by 2 series of estimates for d
that lie under a 45 line.

Tt is not clear from Figure 6 which regions of the correlation integrals should be used to estimate the slopes in
equation 4. We describe a technique that allows a straightforward graphical interpretation of the range of linearity for
the various correlation integrals, The range of linearity is interpreted to be the portion of the correlation integrals which
slope upward from the left and does not include the "flat™ portion that gently slopes upward on the right part of the graph
(when looking at the lower gets of points). Clearly there is soms difference between the uppermost connected set of
points, which is the correlation integral for dimension 2 and is very nearly flat over its entire range, and the lowest set
of points, which is the correlation integral for dimension 20 and which contains a set of points with a steep positive slope
and a set of points that is nearly flat in slope. We need to distinguish between these two
qualitatively different structuzes.

To distinguish bstween them, we compute the first difference between adjacent points and plot the result. The abscissa
on this graph is the Jog of the radius used in the prior calculation. This graph shows the change between adjacent points
in Figure 7 for dimensions 10 through 20. By counting the number of adjacent points that exhibit change of some
predetermined value. say greater than 0.01, one identifies the scaling region, the range of linearity over which the slope
is estimated (Albano, et al.. 1987).

Once the scaling region has been identified, the slope over that region is computed using OLS. We compute the
slopes far dimensions 10-20 and display them. along with the standard error of each estimate, in Figure 8. Figure 8
shows that the slopes increase steadily in value up to dimension 16, after which the slopes "break” or saturate. Put
another wav, the slopes are (approximately) parallel after dimension 16.

Estimating the mean for the slope estimates for dimensions 16-20 and constructing a horizontal line that intersects
the ordinate give a value 2.603. This represents the dimension of the attractor. Since this measure is noninteger, and the
error bars for the estimates of the slopes over the scaling region fail to overlap any integer value, the attractor is 2 swrange
attractor and we conclude that the aggregate dynamics are chaotic for our elementary dynamic model of contextual
interactions (Nicolis and Prigogine 1988: McBumnett 1991).

4. Elites in Political Strucfures

“The effect elites have an the political process is debatable. The contention cénters on the definition of elites,
since elites exist at several levels and in multiple estates (Jennings and Miller, 1986).
We conceive of elites as opinion leaders who can influence others end induce their choice. Political elites therefore may
act to induce voters to change their allegiance from one party to another or to modify a given opinion. Rules governing
alite influsnce cannot by definition be either local or uniform. Under our current definition slites once activated, remain
constant for the duration of the simulation. Elites are “hardwired" sites in the artifical political life that exists on a lattice.
They represent an instance of global action-at-a-distance and non-uniform response to neighboring influences. Hence, if
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an elite is a nearest neighbor, in time. her influence can permeate a lattice and qualitatively influence its configuration.?
4.1 Elites on the Lattice

How many elites are there in 2 population? Eldersveld (1989} reports that elites "actually constitute less than one
percent of the adult population of most communities.” This provides us with a crude baseline for examining the potential
influence of elites om & lattice structure. On a 50x50 lattica, we impose a8 elite by randomly placing sites on it that do
not alter their opinion (1 or 0) according to the stochastic rule updating the sites on ths lattice in the Voter Model, We
assign 25 sites to fixed siates. Sites are selected at random and assigned 2 valus of 1 or 0 at random. Hence we have 12
elites assiened 1s and 13 elites assigned Os {or vice versa) for each simulation.  Again, &q. (12) governs interaction.

Figure 9 shows the aggregate output of a tvpical run of the modified Voter Model of 1000 iterations. While the
Voter Model. with a finitz number of lartice sites, in 2d is known to converge on a consensus in finite time, the
imposition of elites on the lattice halts convergence. The time path of the aggregate distribution of sites shows an
oscillatory pattern that continues through time.

The partern which emerges with the inclusion of elites is qualitatively different from that which emerged without
olites. We have shown that the dynamics for the stochastic Voter Model generates 2 chantic time series. Another way
io think about this process is to infer that aggregate opinion change in the lattice electorate is unpredictable in the shsence
of opinion leaders, While it may be clear from observation that the time series produced by the two model are different.
the difference can be made more precise by examining the dynamics mathematically and contrasting the results,

4.1 Aggregate Dynamics with Elifes

Two options are available. We could choose © examine the fractal structure of the output of the Voter Model
with Elites, an analysis which we conducted with the Voter Model, by using the Correlation Integral over several
dimensions. or we can ¢Xamine the dynamical behavior in some other fashion. The dynamics of the two models (elite
inclusive and no elites) appear to us to be qualitatively different. The first has been shown to have muitiple squilibria and
chaotic dynamics. Figure 10 appears to be quite regular with a stable oscillatory pattern emerging soon after the initiation
of the process. To us, this time series does not appear to ba chaotic and we choose a simpler (less tims consuming)
method 1o analyze these data and characterize its dynamic.

(Fig. 10 here)

We examine the Lyapunov exponent for this tims series. Lyapunov exponents can take on three values which
capture the long-term dynamical hehavior of a time series in all its possibilities (Brown and McBumett, 1992: Moon,
1688: Schuster, 1989). The exponent can be negative, zero, or positive. Negative or zero exponents are associated with
stable dynamic processes. Positive exponents coincide with chaotic dynamic processes The technique we use o datermine
the Lvapunov exponent is the Wolf, et al. Fized Evolution Time Algorithm (see Schaffer. et al. 1988).

Table | gives a set of values for Lyapunov exponents from a varety of initial conditions for the time series
shown in Figure 10 and a comparative Lyapunov exponent for the Voter Model phase portrait shown in Figure 11 (Two
attractor phases portraif).

Table 1
Lyapunov Exponents for the Voter Model with Elites
Run Dimension Time Evolution  Time Delay  Lyapunov Exp.

1 9 10 20 -0.0018

2 9 3 20 -0.0025

3 3 3 20 -0.0027

4 3 5 10 -0.0031
Lyapunov Exponent for the Stochastic Voter Model

5 5 100 20 +0.0102

3 1In subsequent work we will desigm rules that allow for the emergence and time evolution of an elitz. The
purpose of this madification is to discover the effects elites can bave on the dynamics of opinion as the Voter Model
rules operate over long time scales.
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The entries in this table show that this dyzamical series is stable. All the Lyapunov exponents {in the upper
portion of the table) are negative. The lower entry (run 3) shows the Lyapunov exponent for the stochastic Voter Model,
and is positive. Hence the Voter Model, without elites, displays a chaotic time trajectory and sensitive dependence on
initial conditions. With regard to the Voter Model with elites included, this table presents solid evidence that the system
is mot sepsitive to the initial conditions. Over time, nearby initial values converge, rather than diverge. Under conditions
of the stochastic voter model elites are stabilizing influsnce who influence opinion among voters. Indeed the lattices
suggest that their influencs is distributed through the lattice over time. This pattern matches the theoretical expectations
and observable past patterns of elite behavior.

5. Discussion and Conclusion

The zbstraction of this axercise may mask important theoretical implications. At a very cursory fevel a cellular
voter has only two possible states: Democrat or Republican. Yet the voter can also viewed as a tenacious partisan, when
the site survives an interaction with neighbors, or 2 converted partisan, where the site flips or converts hased on the
efforts of others. Modifying the rule would allow us to permit voters 0 be either nonaligned or independent nompartisan
(where for example, a cell site is emply), or a mobilized partisan (where the cell is & new partisan hatched from the set
of the previous nonaligned. independent partisans after interactions with partisans). The resulting states based on efforts
of neighbors reinforce the votar’s current trails or convert the voter to a new position or identification. Similar labels
could identify any cogent hinary political trait. And of course. more complex vectors can be used instead of binary, scalar
valuss for the call traits. As such, the lattice design can provide the same complexity of design as any multivariate
analvsis.

On the surface, political bebavior on a lattice appears to be very simple minded. The approach we take is equal
to asserting that voters lack any serious choice mechanisms when to make political decisions. Voters instead are social
learners who respond who respond uniformly to the nature of their own past traits and those of their defined nearest
neighbors. Yet are these assumptions so drastically different from the traditional view of voters offered from nearly four
decades of survey research (Campbell. et al., 1960: Fiorina. 1978)?

The voter model investigated here includes chaotic processes. This means that the dynamics at the system-level may
prove intractable and unknowable, as the aggregate levels cannot be predicted for time t+1 based on aggregate measurs
such as the the fractions at time t. Even complete information at one level may not allow much insight at the other. In
fattice models without alites, the two dynamics while inseparable and causally linked are also perhaps impossible to
specifv jointly. Because of chaos in the dynamic, the the two levels may be impossible to link even for any particular
case will be available to cover all possible cases of the voter model.

We have bezn able to observe a world without politicai elites. Under normal circumstances of the Voter Model,
a site has not jurisdiction over it’s nearest or next nearest neighbors. That is, it simply caanot take over a cell, but must
work collectivelv to alter its state. Hence. within most specifications of the Voter Model (either deterministic or
stochastic). the outcome of specific interactions in time will result in either a homogensous configuration or invariant
(linear) blocks. This would reflect a political reality where all decision makers have equaily weighted preferences of
attitudes which are held with equal salience. It would be a world whare political power is uaiformly distributed,

The political universe defined defined by lattice models may find that elites may be long lived clusters of cell
sites. Within the rules of the stochastic Voter Model elites appear to be subilizing influences. Yzt simple modifications
may induce results where elites emerge and may eradicate former elites. In the language of lattice dynamics, if there is
no coherent cluster pointing in one direction (or holding ome set of traits). elites will not be well defined. With
modifications it is possible to investigate how specific elites communicate. change their relative share of political power,
move through time and space to gain political support. form coalitions. and eventually take control of complex political
svsterns, The conditions of such political change can be examined and analyzed for critical predictive canditions.
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Fig. 1. A representative latice site i and its neighbors on a square laiice withd = 2 and lattice constant &
The coordinates x, and y, designate the physical location of site 1.
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Fig. 2. First two steps of the time evolution of a restricted segment of the lattice, centered at some
site i, under the deterministic majority law. The values in the circles display the partisanship of the
different sites; the symbol * means that the state cannot be updated without additional knowledge
of the initial configuration beyond what is shown {or t = ().
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Fig. 3. Time evolution cf an initial configuration . with 50%
Republicans (black) and 50% Democrats (white) tco a configuration at
some later time o '
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