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Abstract

We propose a family of measures of population diversity—
total diversity D and its within-gene W, and between-gene
B, components. We observe the dynamics of these quanti-
ties in the context of a particular model—a two-dimensional
world with organisms competing for resources and evolving by
changes in their movement strategy—measuring diversity as
a function of selection and mutation.

Punctuated equilibria in diversity appear at appropriately
tuned mutation rates, whether or not selection is present.
More generally, systematic exploration of mutation rates re-
veals two qualitatively different regions in the space of evolv-
ing systems captured by our model: static “ordered” popula-
tions of genetically similar individuals, and rapidly changing
“chaotic” populations of randem varying individuals. The re-
lationships among diversity D and its components W), and B,
capture the typical features of these ordered and chaotic sys-
tems.

1 To Study the Evolution of Diversity

Complex adaptive systems are embodied in many settings, ranging from ecological
populations of organisms, through immune systems of antigens and antibodies,
even to networks of neurons in the brain. By abstracting away the diverse details,
one can model complex adaptive systems at a level of generality sufficient to hope
to reveal fundamental principles governing broad classes of such systems—this we
take to be the working hypothesis of artificial life [1].

One reason for the impressive results of many artificial life models is their
“emergent” architecture: The system’s global adaptive behavior emerges implic-
itly from an explicitly modeled population of low-level individuals. We have been
studying a class of models consisting of a population of computation agents (basi-
cally, individual computer programs) that interact with each other and with their




environment in a way that allows natural selection implicitly to shape their strate-
gies for achieving various global computational goals. Our approach starts with
the attempt to formulate definitions of statistical “macrovariables”—loosely akin
to thermodynamic macrovariables like pressure or temperature—that reflect fun-
damental aspects of a system’s adaptive behavior (e.g., see [3]). Then we try to
identify simple laws relating these macrovariables to other fundamental system
parameters (e.g., see [2]), and we try to use these macrovariables to identify and
explain basic classifications of systems.

An obvious but striking feature of complex adaptive systems is change (and
stasis) in population diversity. One fundamental task for artificial life is to de-
scribe and explain the evolutionary dynamics of population diversity. How can
population diversity be defined and measured? How does diversity change as a
population evolves? How do diversity dynamics vary as a function of other fun-
damental system parameters, such as mutation rate and selection pressure? Does
population diversity define qualitatively different kinds of evolving systems? The
present study addresses these questions (see also [4, 5]).

2 A Simple Model of Evolution

The model used here is designed to be simple yet able to capture the essential fea-
tures of an evolutionary process [8, 3]. The model consists of organisms (sometimes
_called “bugs”} moving about in a two dimensional world. The only thing that exists
in the world besides the organisms is food. Food is put into the world in heaps that
are concentrated at particular locations, with levels decreasing with distance from
a central location. Food is refreshed periodically in time and randomly in space.
The frequency and size of the heaps are variable parameters in the simulation.

The food represents energy for the organisms. Organisms interact with the
food field by eating it at their current site at each time step, decrementing the food
value in the environment and incrementing their internal food supply. Organisms
must continually replenish their internal food supply to survive. Surviving and
moving expend energy. Organisms pay a tax just for living and a movement tax
proportional to the distance traveled. If a organism’s internal food supply drops to
zero, it dies and disappears from the world. On the other hand, an organism can
remain alive indefinitely if it can continue to find enough food. Any evolutionary
learning that occurs in the model is the effect of the one stress of continually finding
enough food to remain alive. A good strategy for flourishing in this model would
be to efficiently acquire and manage vital energetic resources.

It is important to note that selection and adaptation in the model are “intrin-
sic” or “indirect” in the sense that survival and reproduction is determined solely
by the contingencies involved in each organisms finding and expending food. No
externally-specified fitness function governs the evolutionary dynamics (8, 3].

The organisms in this model follow individually different strategies for finding
food (and hence are sometimes called “strategic bugs” [3]). The behavioral disposi-
tion of bugs is genetically hardwired. A behavioral strategy is simply a map taking
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sensory data from a local neighborhood (the five site von Neumann neighborhood)
to a vector indicating a magnitude and direction for movement:

S :(81y.0ey85) = 0= (r,0). (1)

A bug'’s sensory data has two bits of resolution for each site, allowing the bugs
to recognize four food levels (least food, somewhat more food, much more food,
most food). Its behavioral repertoire is also finite, with four bits of resolution for
magnitude r (zero, one, ..., fifteen steps), and three bits for direction  (north,
northeast, east, ...). A unit step in the NE, SE, SW, or NW direction is defined as
movement to the next diagonal site, so its magnitude is v/2 times greater than a
unit step in the N, E, S, or W direction. Each movement vector ¥ thus produces a
displacement (,y) in a square space of possible spatial destinations from a bug’s
current location.

The graph of the strategy map S may be thought of as a look-up table with 2°

. entries, each entry taking one of 27 possible values. This look-up table represents

an organism’s overall behavioral strategy. The entries are input-output pairs that
link a specific behavior (output) with each sensory state (input) that an organism
could possibly encounter. The input entries in the look-up table represent genes or
loci, and the movement vectors assigned to them represent alleles. Since bugs have
1024 genes or loci, each containing one out of 4 possible 128 alleles or behaviors, the
total number of different genomes is 128'%%, Although finite, this space of genomes

‘allows for evolution in a huge space of genetic possibilities, which simulates the

much larger number of possibilities in the biological world.

Bugs reproduce both asexually and sexually. When an organism’s internal food
supply crosses a threshold, it reproduces. If it is finds itself adjacent to another
bug with sufficient internal food. the pair flip a biased coin to decide whether
to reproduce sexually. If the original bug does not reproduce sexually, it produces
some number of offspring by asexual budding. In either case, after reproduction, the
parental food supply is divided equally among the new children and the parent(s).

Parental genes are inherited with some probability of mutation. Analogous to
the exchange of genetic material during crossover, each child contains a mix of ge-
netic material randomly chosen from the two parents (sometimes called “uniform”
crossover). There is no gender distinction so sexual reproduction simply involves
offspring that are produced with a mixture of parental genetic material. Point mu-
tations of the genes change the output values of entries in a child’s look-up table.
The mutation rate y determines the probability with which individual loci mutate
during reproduction. At the limit of g = 1, every allele has probability one of
mutating and thus each child’s alleles are chosen completely randomly.

While mutation rate is an explicit parameter of the model, selection pressure is
controlled indirectly by adjusting other explicit parameters. The parameter called
“output noise” is defined as the probability that the behavior actually performed
by a bug on a given occasion in a given local environment will be chosen randomly
from the 27 possible behaviors, rather than determined by the bug’s genes. If
the probability of noise is one, then natural selection never has an opportunity to
“test” the usefulness of the behavioral traits encoded in a bug’s genome. So, the
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alleles or traits transmitted in reproduction reflect chance only. There is heritable
genetic variation but no heritable phenotypic variation, so no natural selection. In
simulations reported in this paper, noise was set to either zero or one, thus creating
pairs of simulations identical except with respect to selection.

This model is a very abstract and idealized representation of a population of
evolving organisms, and has many biologically unrealistic respects. Nevertheless,
our working hypothesis is that this model captures many fundamental aspects of
evolving systems, and is thus a useful way to investigate the essential aspects of
more complex evolving systems [8, 3, 1].

b

8 Measures of the Components of Diversity

How might population diversity be measured? Our proposal, very roughly, is to
plot the population as a cloud of points in an abstract genetic space, and then define
the population’s diversity as the spread of that cloud. In the present model, an
allele is a movement vector, a spatial displacement, and an individual’s genotype
is a set of spatial displacements. To capture the total population diversity, D,
then, collect all the displacements of all bugs in all environments into a cloud,
and measure the spread of that cloud. (In what follows “diversity™ always means
population diversity.) g "

We can divide this total diversity D into two components. First, collect the spa-
. tial displacements of each bug in the population in a given environment, i.e., the
traits encoded at a given gene across the population, and calculate the spread of this
environment-gene cloud. The average spread of all such environment-gene distribu-
tions is a population’s within-gene diversity W,. Now, form another, second-order
collection of the centers of gravity of each environment-gene cloud, i.e., a cloud of
each “average” displacement across the population in a given environment-gene.
The spread of this second cloud is the population’s between-gene diversity By, which
measures the diversity of the average population response across all environments,
i.e., genes.

It turns out that the total diversity is the sum of the within- and between-gene

components, D = W, + B,. The relative proportions of these components reflects
a population’s genetic structure. Consider a population consisting of “random
individuals,” in the sense that each bug’s alleles are chosen randomly from the set
of possible alleles, different bug’s genes being chosen independently. In this case,
the distribution across the population at any given environment-gene will be a huge
cloud covering the whole set of possible spatial displacements, so the population’s
within-gene diversity W, will be quite large. Since the center of gravity of each
of these huge clouds will be virtually the same point—the center of the space
of possible behavioral displacements—the distribution of these centers of gravity
will be quite tight, and so the between-gene diversity will be nearly zero, B, = 0.
The population’s total diversity will approximately equal the within-gene diversity,
D = W,.

Another extreme case is a population consisting of genetically identical bugs
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that have “tuned” their behavior in such a way that what they do in one environ-
ment differs significantly from what they do in another. In this case, the within-gene
diversity is zero, W, = 0, since the average spread of the cloud of behavioral dis-
placements at each environment-gene is nil. On the other hand, since the average
behaviors in different environments are quite different, the between-gene diversity
is large and equal to the total diversity, D = B,.

More formally, we define total diversity as the mean squared deviation between

the average movement of the whole population, averaged over all individuals and
over all environmental conditions, and the individual movements of particular in-
dividuals subject to particular conditions, i.e.,

D= ‘_ZZ[ Tij — + (i — 3"”)2] (2)

l“"‘l j=1

where [ is the number of individuals ¢, J is the number of environmental conditions
(or, in the present model, crenes) 1. (:z:,_,,yu) is the movement vector of individual ¢
subject to input j, and ¥ = £ T, ¥/, z;; (similarly for 777). Se, (i”,gj”_) is
the (z,y) displacement of the populatxon averaged over all individuals i and genes
(environments) j. Then, the within- and between-gene components of the total
diversity are defined as follows:

1 LJ L

Ly:ﬁ;; '7"11'“"‘1'.7) + (¥i5 — JJ)] (3)
1 & ]

By = 33 [(&" = 2") + (5" - ")) (4)

where #;/ = 1 L z;; (and similarly for ;7). So, (£;/,;%) is the (z,y) displace-
ment of the populat:on in gene (environment) j averaged over all individuals :.
(Further formal analysis of diversity and its components is developed elsewhere
[4, 5].)

Absolute diversity values presented here reflect the size of the model’s output
space. (To compare diversity measurements across different size output spaces,
measurements could be normalized by the size of output space; since all our simu-
lations have the same size output space, we have not done this.) The maximum pos-
sible diversity value corresponds to the distribution in output space that is peaked
at the four corners; in this case, each point is maximally distant from the mean (in
this case, the center of output space). In the present context in which the maximum
displacement is fifteen squares, the diversity value of this “corner post” distribution
is the sum of the z and y displacements from the mean, i.e., 15% + 152 = 450. In
a flat random distribution in our modified polar coordinate system of 128 possible
movements, since movements in the NE, SE, SW, or NW directions are /2 times

larger than movements in the N, E, 5, or W directions, the diversity value of the
412 +V2)+(22+ (z\/“)=1+ +(182+(15v2%)] _ 116.925.

flat distribution is
Intuitively, the “corner post” d1str1but10n is not maximally diverse, while the
flat distribution is, but the diversity measures defined here are much higher for the




“corner post” than for the flat distribution. However, recall that food is placed in
the simulated world in heaps that slope away from the center and that the bugs
pay a movement tax proportional to distance traveled. So, is is not surprising that
observed diversity values exceed 116 only in special circumstances when selection
is absent. :

4 Observations of the Evolution of Diversity

Diversity was measured in a series of simulations in which mutation rate and the
presence or absence of selection were varied, while all other parameters of the
model, including the size of the world and the food environment, were held con-
stant. We simultaneously measured two crude aspects of the “performance”™ of
the population—the population level and the amount of uningested food in the
environment—on the assumption that higher population level and lower uningested
food reflects better evolutionary learning on the part of the population.

In all simulations reported here, traits were assigned to the founder population
randomly. with displacement direction chosen from the eight compass directions
and distance in steps chosen from zero, one and two. Thus, in the founder popu-
lation, the total diversity was relatively low, D = 2.5, and virtually all of the total
diversity was in the within-gene componernt, D = W, and B, = 0.

Typical results from the first 10,000 time steps of simulations with mutation rate
- p =0 are shown in figure 1. Notice that the within-gene diversity W, drops over
time and eventually reaches zero when the entire population becomes genetically
identical (this effect typically takes more than 10,000 time steps if selection is

absent, as in figure 1 right). Furthermore, notice that the between-gene diversity B,

increases over time until it eventually equals the total diversity D {again, typically
more than 10,000 time steps are required when selection is absent).

This crossing of the W, and B, components is to be expected under selection:
W, will drop as selection progressively weeds out traits at given loci. and By will
rise as traits at different loci become specialized in different directions. Pure ge-
netic drift will produce similar component crossing: W, will drop as stochastic
sampling fixes more loci, and B, will rise as different traits become fixed. What
can differentiate whether or not component crossing is due to selection is its tim-
ing; selection should make crossing faster, as indicated in figure 1 (left vs. right).
Population performance data corroborate this explanation, since selection supports
larger populations that extract much more food from the environment.

4.1 Punctuated Equilibria

Artificial life systems commonly display punctuated equilibria in quantities like
species concentration [7] and average fitness [6]. Yet the causes of these punctuated
dynamics remain uncertain. Ecological complications such as host-parasite inter-
actions or genetic complications such as extensive epistasis are typically thought to
be implicated, and it is almost universally assumed that selection plays an essential
role. Qur observations question both these presumptions.
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Figure 1: Diversity, population level, and uningested food in the first 10,000 time
steps of two typical simulations with mutation rate 4 = 0; normal selection on the
left (output noise = 0), no selection on the right (output noise = 1).

Diversity in the present model displays clear punctuated equilibria. Figure 2
shows the typical dynamics of diversity for simulations with very low mutation
rates; in these cases, 0.00001 < ux < 0.00003. The total diversity D remains
largely static for significant periods of time, but every now and then diversity
is punctuated by very rapid changes.. The resulting picture is characterized by
relatively flat plateaus separated by abrupt cliffs. (In these punctuated equilibria
D is comprised almost totally of between-gene diversity B,; diversity components
are discussed further in the next section.)

It is striking that these punctuated equilibria occur in such a simple model.
None of the ecological or genetical complications usually thought to play a role are
explicitly present in the model. For example, the population has no explicit division
into anything like host and parasite and the genetic structure has no epistasis. It
is true that the model could support the emergence of implicit sub-populations
following competing or cooporating food-finding strategies. Such sub-populations
would produce a substantial within-gene diversity W,, since the average trait at
given loci must then differ between the sub-populations. W, values in the two
simulations with selection (figure 2, left) are consistent with the presence of slightly
different sub-populations for some periods, but the simulations without selection
(figure 2, right) show no signs of sub-populations. Thus, implicit sub-populations
might sometimes contribute to punctuations in some of the simulations, but they
clearly play no fundamental role in punctuated equilibria generally.

The most striking aspect of these punctuations is their presence even when nat-
ural selection is absent. Although punctuated equilibria in the absence of selection
occur only when the mutation rate u is appropriately poised near 0, the effect is
quite robust. The presumption that punctuated equilibria reflect certain aspects of
selection is simply wrong. Therefore, even when punctuated equilibria occur with
selection, we cannot assume that selection plays any important role in its genesis.
Evidently, there is an intrinsic tendency for evolving systems absent selection—that
is, stochastically branching, trait-transmitting processes—to produce punctuated
diversity dynamics, provided the branching rate is suitably poised. How to explain
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Figure 2: Diversity data from the first 1,000,000 time steps of four typical low
mutation simulations with low initial diversity. Selection operates normally in the
simulations on the left (output noise = 0) and there is no selection on the right
(output noise = 1); mutation rate u = 0.00003 in the simulations on the top and
4 = 0.00001 on the bottom. e

- this effect remains an open question.

4.2 Structure in the Space of Evolving Systems

Punctuated diversity dynamics fit into a broader pattern suggesting a fundamen-
tal classification of qualitatively different kinds of evolving systems, at least in
the space of systems akin to those defined by the parameter space of the present
model. We measured total diversity D and its within-gene W, and between-gene
B, components in a series of pairs of selection/no-selection simulations, smoothly
varying the mutation rate p (on a log scale). Figure 2 shows two typical pairs of
simulations with p near 0, and figure 3 shows two typical pairs of simulations with
u near 1.

The diversity data reveal two qualitatively different kinds of evolutionary dy-
namics. When p is quite low (figure 2), the total diversity is well approximated by
the between-gene diversity, D & B,, and the dynamics of D consists of periods of
stasis punctuated by rapid shifts in diversity (as discussed in the previous section).
Furthermore, the frequency of the punctuations increases with g. On the other
hand, when x is toward the high end of the spectrum, the total diversity is well
approximated by the within-gene diversity, D ~ W,, and the total diversity D ex-
hibits noisy fluctuations around an equilibrium value. As the mutation rate drops,
the amplitude of the fluctuations increases. When x = 1 the equilibrium diversity
value equals the theoretically calculated value of a totally random, “flat” distribu-
tion of alleles. As u falls off from 1, so does the equilibrium diversity value, but this
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Figure 3: Diversity data from the first 100.000 time steps of four typical high
mutation simulations with low initial diversity: normal selection in the simulations
on the left (output noise = 0) and no selection on the right (output noise = 1}):
mutation rate ¢ = 1 in the simulations on the top and g = 0.1 on the bhottom.

drop in equilibrium diversity value is greater when selection is present (compare
figure 3, bottom left and right). Although selection does have some subtle effect of
the details of these diversity dynamics, the broad qualitative classification applies
whether or not selection is present. (Further details of the effects of mutation and
selection are described elsewhere {4, 5].)

Figure 4 summarizes these observations. The abstract space of evolving systems
. (at least those akin to the present model) has two qualitatively distinct regions, at
the respective ends of the mutation spectrum (figure 4). Low mutation systems are
“ordered,” consisting of a population of genetically identical (or, nearly identical)
individuals—in effect, a population of near “clones.” Different loci encode different
traits, and this distribution of traits across loci abruptly shifts from time to time.
By contrast, high mutation systems are “chaotic,” consisting of a population of
genetically distinct individuals, each of which has a random collection of alleles.
The gene pool is a furiously boiling random distribution. Finally, the ordered and
chaotic regions surround a broad gray area, perhaps hiding additional structure.

The diversity components can be used to define the border separating the or-
dered and the chaotic regions from the intervening gray area. As u increases from 1
in the ordered region, the frequency of D & B, punctuations increases and the av-
erage duration of the periods of stasis decreases (as is to be expected). The ordered
region dissolves away when the duration of the periods of diversity stasis drops to
zero. On the other hand, as p falls off from 1 in the chaotic region, the amplitude of
the fluctuations around the equilibrium D value increases {as could be expected).
The chaotic region dissolves away when the amplitude of these fluctuations diverges
to its maximum value.

L
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Figure 4: A schematic picture of the structure of the space of evolving systems,
indicating two regions of qualitatively different behavior separated by a large gray
area that might contain further structure. Systems with low mutation rate p
are “ordered”—individuals in the population are more or less genetically identi-
cal. High u systems are “chaotic”—the genetic structure of each individual in the
population is more or less random.

This structure in the space of evolving systems has an interesting connection
with optimal population performance, measured by how much food the population
can extract from the environment. Three robust patterns in uningested food emerge
(figure 5). First. as could be expected, when selection is absent uningested food is
flat across the mutation scale and is significantly higher than in simulations with
selection. Second. when selection is present. uningested food rises as p approaches
1 (as could be expected), as well as when g is extremely close to 0 (again, as
could be expected). Finally, food extraction is maximized when g is broadly in the

-vicinity of the boundary between the ordered region and intervening gray area.

This effect might reflect a balance between two competing demands of evolu-
tionary learning. On the one hand, the need to remember what has been learned
argues for a low enough mutation rate; on the other hand, the need to explore
novel possibilities argues for a high enough mutation rate. Optimal evolutionary
learning, then, requires the mutation rate to balance these competing needs appro-
priately. This optimally poised mutation rate evidently coincides with the region
around the edge of order.

5 Towards a Science of Artificial Life

We are aiming to achieve two goals simultaneously: first, to develop plausible
and useful measures of population diversity and, second, to use those measures to
discern fundamental features of the evolution of diversity. Progress towards these
goals is related. One reason for finding our observations plausible and interesting
is that our measures of diversity seem appropriate, and one sign that our measures
of diversity are appropriate is that they reveal apparently plausible and interesting
effects.

To confirm the extent of our progress toward these goals requires further work.
Many analytical details remain to be settled, of course, and extensive simulations
are required to construct a more precise statistical analysis of our effects. But the
most important task is to replicate our results in other models. Seeking similar di-
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Figure 5: Time averages of uningested food across typical simulations as mutation
rate p is varied (on a log scale). One set of simulations has normal selection; the
other has no selection (output noise = 1). The “bars” surrounding each point
indicate the standard deviation of the time series of food values. The leftmost
selection and noise points represent x = 0.

versity effects across models is feasible only if our measures of diversity can be suit-
~ably generalized. Although some formal details do depend on some idiosyncrasies
of our model, the basic thrust of our approach is quite general. Furthermore, all of
the present results pertain to one model; so, simple and general as the model may
be. the generality and robustness of our results remains conjectural. Final confir:
mation of the importance of our measures and the universality of our effects—and
vindication of artificial life’s fundamental working hypothesis—can come only from
comparing quantitative results across a host of complex adaptive systems.
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