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Abstract

The dynamics of a deterministic model for the interaction of populations
of bacteria attacked by phages is analyzed. We find that the basic system
with one type of bacteria and phages can show oscillations in a CSTR. Two,
three, and four competing populations show chaos, hyperchaos, and chaos with
three positive Lyapunov exponents, respectively. We discuss the principle of
generating complexity by coupling of oscillators with a common feeding source.
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1 Introduction

Time series in population dynamics often show stochastic features. They resemble
noise rather than explainable structure, and the deterministic basis for the dynam-
ics has been a question of debate. A large number of empirical data have been
analyzed with respect to the occurrence of chaos, and low-dimensional systems of
ordinary differential equations have been proposed for the irregular ups and downs,
e.g. in childhood epidemics (Olsen & Schaffer, 1990). In many cases, however, clear
evidence for simple chaos could not be established and stochastic elements were
introduced in the models to account for behavior where chaos failed to explain sig-
nificant features (Olsen et at., 1988). Clearly, different grades of irregularity are
possible in the observed dynamics. It is of interest to investigate whether differ-
ent grades of aperiodicity can be accounted for by deterministic models without
explicitly introducing noise or random variables.

In an effort to bridge the gap between deterministic three-variable chaos and
white noise with infinite degrees of freedom the idea of a chaotic hierarchy was in-
troduced (Rossler, 1983). It was predicted that with increasing number of degrees
of freedom the maximum complexity of a dynamical system could continue to in-
crease. Starting from a closed periodic trajectory as an attracting solution, the
action of stretching and folding in phase space can introduce divergence of nearby
trajectories on a bounded attractor and result in stable chaotic behavior. However
the procedure of stretching and folding, i.e. mixing, can be applied in more than
one independent directions. In particular, systems with N deterministic variables
(N > 3) may produce hyperchaotic behavior with up to N — 2 positive Lyapunov
characteristic exponents (LCEs). In this work we investigate the occurrence of hy-
perchaos (Rossler, 1979; Thomsen et al., 1992; Baier & Klein, 1990). in a model
of bacteria-phage interaction. A main purpose is to illustrate a type of coupling

between pray-predator systems which can produce thise complex forms of behavior.

2 The model

The model is given by the following set of ordinary differential equations for n

populations of bacteria and their respective phages in a continuous flow stirred tank




reactor (CSTR) (Nielssen et al., 1991)
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These are the basic contributions to the model: Bacteria B feed autocatalytically
on substrate S which is being fed continuously. The growth rate is described by a
saturation function. Bacteria of type i are attacked by phages F; to yield infected
bacteria I;. These are modelled using three delay variables I, I;», and I;;. Infected
bacteria are destroyed after some delay time and release new phages. Phages can
also adsorb to the walls of infected or noninfected bacteria. Parameters v, &, @,
and w describe, respectively, the bacterial growth rate with no resource constraints,
the substrate concentration below which the bacterial growth rate decreases, the
adsorption rate of phages on bacterial surfaces, and the infection probability. 7 is
the characteristic infectious period during which phages multiply in the bacterial
cell. ¢ is an external supply of phages (the infection source). 3 is the bust size, ie.
the number of phages released in average by each infected bacterial cell. o is the
external supply of resources, and 7 is the resource consumption per cell division.

Realistic parameters are given in Nielssen et al. (1991) to be: a = 10~° 1/min,
w = 0.8, k = 10! mg/l, v = 0.024 min~!, 4 = 0.01 mg, 7 = 30 min, § = 100,
o = 10* mg/l, and ¢ = 0.1 I"*-min~%.

Different from the original model designed for application in the dairy industry
we have omitted cross-infection of bacteria B; by phages P; (i.e. off-diagonal elements
in the w matrix in Nielssen et al. (1991) are equal to zero). All other terms and
parameters are kept as in Nielssen et al. (1991). We vary the dilution rate p and

study the asymptotic dynamics of the equations. Reintroducing the cross-coupling
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has been found not to alter the dynamics significantly.

3 Results

3.1 One population

In the simplest case only one population of bacteria and phages is considered. Bac-
teria feed on substrate and multiply. At the same time their number is decreased by
successful attacks by phages. Phages multiply as a function of lysed infected bacte-
ria. For large values of the dilution parameter p (p > 0.0058 min~") both bacteria
and phages arrive at a stable steady state. The bacterial population successfully
maintains a high level of individuals due to plenty of substrate. Fast dilution keeps
the number of vira at a comparatively low level. The ratio of bacteria to phages is
stable with respect to fluctuations. As pis decreased, however, the sensitivity to
fluctuations grows and at p = 0.0058 min~! the steady state looses stability. We
find a Hopf bifurcation of a focus and for p < 0.0058 min~! there are stable limit
cycle oscillations with increasing amplitude as p is decreased further. The limit cycle
is characterized by bursts in the phage population which drastically diminish the
bacterium population. This in turn reduces the rate of viral replication. As vira
are diluted and new substrate enters the flow reactor, bacteria recover and the cycle
starts anew. For p = 0 the bacterium population dies out after some transient time
depending on the chosen initial conditions. Numerically we did not find hysteresis
or bistability in the bifurcation diagram. The single population bag:terium—pha.ge

system is a dissipative Hopf oscillator with a supercritical transition.

3.2 Two populations

Next we consider a system with two identical bacterial populations each being sub-
ject to attack by a specific phage. As noted above only attacks of phage F; on
bacterium B; are successful. Adsorption of phage F; on bacterium B; diminishes
the number of phages but does not produce any infected bacteria. The two popula-
tions are treated the same except for initial conditions. In the bifurcation diagram
Fig. 1, Poincaré cross-sections for By = B3 are displayed as a function of the dilution
rate p. Starting at p = 0.0050 min~* the system exhibits limit cycle oscillations with

phase delay between the two populations. Decreasing p the limit cycle undergoes a
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torus bifurcation to quasiperiodic solut.;ions interrupted by phase locking as would
be expected for the case of two coupled oscillators. The locked state of period seven
shows pe.riod-doubh’ng to a period 14 solution. Herafter the solution unlocks again
and for still lower dilution rates the torus breaks down and becomes chaotic. Chaos
is reached at p = 0.00448 min~?!, and the system stays chaotic as p is decreased
further.

The chaotic range in parameter space seems to consist of two parts as judged
from the structure of the bifurcation diagram. There is a change in the distribution
of cross-section points at p ~ 0.00402 min~*. To investigate this further we show
another projection of the bifurcation diagram in Figs. 2a and 2b starting with two
different initial conditions at high values of p. There are two chaotic attractors
coexisting for p > 0.00402 min~!. They merge to yield a single chaotic solution at
p ~ 0.00402 min~! and, judging from numerical treatment, the system appears to
possess only one stable chaotic attractor for p < 0.00402 min~!. Figs. 3a and 3b
show cross-sections of the two coexisting chaotic attractors for two sets of initial
conditions. They are both characteristic of fractalized two-tori and can indeed be
shown to originate in two coexisting two-frequency quasiperiodic solutions. The
transition in the structure of the chaotic solutions can now be attributed to a crisis
associated with a collision of the coexisting chaotic attractors with their separating
basin boundary. This boundary crisis (Grebogi et al., 1987) is common in systems
of two coupled oscillators. It is interesting to observe that the merged attractor
conserves almost all features of the two coexisting attractors right before the crisis
(Fig. 3c). We then arbitrarily chose a value for p in the chaotic region (p = 0.0015
min~!) and calculated the spectrum of Lyapunov exponents for the corresponding
attractor. We found: A; = 3.02-10~% min~?, \; = 3.10-107° min~?, and A3 = —2.06-
10~ min~!. The spectrum confirms chaos with one positive Lyapunov exponent.
In addition A\; + A3 > 0, so the chaos is of the Kaplan-Yorke type (Kaplan & Yorke,
1979) with dimension larger than 3.

3.3 Three populations

In the same way as in the preceeding section we now extend the original oscillat-
ing unit to a system with three different populations feeding on continuously fed

substrate in a CSTR. The system is herafter composed of 16 ordinary differential




equations. As might be expected the ciyna.mic behavior is quite complicated 8o we
describe the bifurcation diagram (Fig. 4) in some detail.

First we note that Fig. 4 has not been obtained for a single set of inital conditions
followed adiabatically as p is decreased or increased. Several branches with some-
times coexisting solutions have been plotted on top of each other. For p = 0.0065
min-! there are two coexisting period-one solutions both of which are found to stay
stable down to p &~ 0.0031 min~!. From p ~ 0.00625 min~! to p = 0.00600 min~!
we find quasiperiodic motion and locked states on a folded two-torus. In the chosen
cross-section (B; = B;) the torus is cut twice by the Poincaré plane. Fig. 5 shows
the attractor at p = 0.00625 min~?. The largest Lyapunov exponents are found to
be 4.24-10~° min~!, 3.12-10"° min~?, and —1.24-107* min~? indicating quasiperi-
odicity. On both branches the system evolves antimonotonously (Dawson ef al,
1992) and there are several lockings of high periodicity as p is decreased followed
by a transition to chaos via torus break-up. The chaotic attractor shown in Fig. 6
consists of small line segments, many of which show a typical folded shape. For the
corresponding aperiodic time series the largest Lyapunov exponents are 4.3 - 1078
min=!, 7.5 - 1078 min~!, and —1.9 - 107° min~" (a single positive exponent) and
A + A\; < 0, thus there is simple chaos with a fractal dimension of the attractor
9 < Dp < 3. The Lyapunov dimension was calculated to be Dp = 2.23.

The window in parameter space for simple chaos is small, however. At p = 0.0055
min-! we find an attractor with different structure. The former islands are now
connected and the shape resembles a closed but multiply twisted ribbon (Fig. 7).
Calculating the LCE spectrum yields A; = 1.86 - 10~5 min~?, and A3 = —1.49-107°
min=!. Thus A + As > 0, and there is a jump in the integer part of the dimension
of the chaotic attractor (3 < Dp < 4). The Lyapunov dimension formula gives
Dy = 3.01.

As p is decreased toward p ~ 0.0047 min™?, the width of the ribbon widens
and the attractor becomes more and more sheet-like. At p = 0.0047 min~! there
is a crisis and the chaotic attractor disappears. Depending on initial conditions
the system settles down to one of two coexisting period-one limit cycles. Period-
one oscillations seem to be the only stable solutions as p is decreased until, for
p < 0.0037 min~!, aperiodic behavior is encountered again, this time coexisting

with the period-one limit cycle down to p = 0.0031 min~!. The cross-section of
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the chaotic attractor at p = 0.0035 min™! is plotted in Fig. 8. The structure is
sheet-like, and the sheet obviously possesses foldings. The four largest LCEs are
A; = 3.03-10~% min~!, Ap = 1.85.107* min~!, N3 = —5.51 - 107® min~?, and
M\ = —3.41 - 10~* min~!, confirming that the attractor produces hyperchaos (C?)
with two directions of stretching and folding. With A; 4+ Ay > 0 the Lyapunov
dimension is Dy = 4.16. For p < 0.0032 min~! the hyperchaotic attractor appears

to be the only stable solution in our model for three populations.

3.4 Four populations

As 2 final numerical experiment we couple four populations of bacteria with their
respective phages in the same way as before. The system starts with simple periodic
oscillations for high values of p, and the complexity of the dynamics increases as p is
decreased. As in the case of three coupled populations there are multiple coexisting
solutions and phase space structure becomes complicated. Several types of chaos
can be distinguished. Given the above results we expect the most complex type
of behavior to dominate the system for small values of p. We arbitrarily chose
p = 0.0030 min~! and found chaos with a Poincaré cross-section that resembles a
distorted cube in some projections. The basic difference when compared to simple
hyperchaos is that a cross-section of in this regime of the four popitlation model
can no longer be adaquately embedded in three dimensions (Fig. 9). The six largest
Lyapunov exponents are A; = 4.2-107* min~%, A; = 3.1- 104 min~*, \; = 1.5-107*
min~!, Ay = 4.9 - 107 min~!, Ay = —2.2 - 10~* min~?, and Xs = —6.7-107* min~>.
There are three positive LCEs, i.e. hyper?>-chaos (C?) with the convention used in
Klein & Baier (1991). Applying the Kaplan-Yorke estimation for the Lyapunov
dimension yields Dy & 5.99. This behavior is stable with respect to small changes
in initial conditions as well as in p. Also, for p < 0.0030 min~! the basin of this

hyper®-chaotic dynamics appears to dominate the phase space.

4 Discussion

In population dynamics it is often assumed that an ecological system tends to become
more and more stable as additional species are introduced. Our work shows that

this may not be the case, but that the complexity can continue to increase with
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the number of species. Moreover, this complexity is found to be generic and to
exist for a variety of different formulations of the interspecies interactions and for
a wide range of parameter space, including parameter values which appear realistic
for microbiological systems.

The system in egs. (1-6) is a set of ordinary differential equations describing the
interaction of bacteria and phages in a reduced and deterministic way. Arbitrary
numbers of populations may be chosen. The one population oscillator consists of
two coupled amplification rules. First, B grows autocatalytically on expense of S.
Second, P grows in a loop that is fed on B. In principle, this set of differential
equations could as well describe a chemical reaction scheme.

The numerical simulation of more than one population reveals the following
general features. In all cases studied there is a unique solution for ”high” values of
p, as well as for "low” values of p. For high values there is a stable steady state of
both bacteria and phages, and the steady state is homogeneous, i.e. same values for
identical populations. No symmetry breaking is observed for high p. For low values
the system exhibited the most complex type of behavior in scans of parameter p.
This behavior was chaotic and included all populations likewise in the three cases
studied. There are no obvious differences in the statistics of the variables for different
populations. The bifurcation diagrams from high to low values of p show increasing
complexity as the number of populations is increased. Particularly we find that due
to the symmetry of the systems with more than one population multiple coexisting
solutions appear. For the three population system some preliminary evidence for
fractal basin boundaries between coexisting attractors was found (Nielssen et al,
1991).

Here we wish to focus on the dynamics of the most complex attractor for low
values of p. The systems with one, two, three, and four populations possess zero,
one, two, and three positive Lyapunov exponents, respectively, in the most complex
case. It appears that each time a population is added the maximum number of
positive LCEs increases by one. Even though it might be assumed naively that
coupling of increasing number of nonlinear subsystems may lead to the possibility of
more complex dynamics in phase space it is a common experience that, for instance,
diffusive coupling of nonlinear oscillators does not in general lead to hyperchaotic

solutions (Kennedy & Aris, 1980). In our case, in contrast, it was not even necessary
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to adjust more than one parameter to.sa.fely find chaos with three positive LCEs in
the four population model.

We éuggest that it is the particular type of coupling that allows one to create
hyperchaotic solutions. The one population subsystem settles to a-stable steady
state for high values of p, i.e., for conditions with sufficient supply of substrate and
efficient wash-out of phages. As supply of substrate and flow through the reactor
are decreased the steady state looses stability and creates oscillatory dynamics. If
more than one population is present then the same holds true for each subsystem.
In addition, populations compete for a constant supply of the same source of food.
This competition for one common substrate causes the suboscillations to interfere
with each other creating ever higher chaotic trajectories as more of the oscillating
subsystems are coupled.

In the case of diffusively coupled chaotic attractors a transition from homoge-
neous chaotic solution to hyperchaos via locked states has been demonstrated for
decreasing coupling strength (Badola et al., 1991). In contrast, in our system no
driving system which itself is chaotic is required and coupling between substrate and
bacteria is left unchanged. Substrate-coupled oscillators generate toroidal behavior
and chaos arises from distortion of the torus. In the two-population model with sim-
ple chaos the Lyapunov dimension exceeds three but the third Lyapunov exponent
stays negative and never reaches zero. Ouly one direction of stretching and folding
takes place, resulting in a fat fractal torus. In the three population system we also
observe this type of chaos (Fig. 7) but this time, as p is decreased, the largest of
the negative exponents reaches zero and leads to a second positive one. On the
torus, stretching and folding occurs in a second independent direction. Similarly,
in the four population model a third direction of divergence in phase space occurs.
Our system thus is a first candidate for an explicit model realizing the hierarchy of
chaotic events under realistic assumptions (Rdssler, 1983).

For further investigation of this principle we have simplified the system of egs.
(1-6) by omitting the two linear delay equations for I;; and i3 (coupling I;; instead
of I;3 to the phage variable P). Also we put w = 1 and omitted all cross-couplings
between populations (adsorption of phage i to bacteria and infected bacteria 44
i # j. We end up with a system of identical populations, each population consisting

of three equations which are isolated except for the sole fact that they feed on
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the same substrate. Pérforming simulations with all other constants as before we
find that again for low values of p the new systems with one, two, three, and four
populations produce attractors with zero, one, two, and three positive Lyapunov
exponents. This confirms that coupling of identical subsystems to one common
substrate is the source for higher chaos in our system.

The model may help explain observed variations in the size of competing pop-
ulations on deterministic grounds and offer one appraoch to the understanding of
hyperchaotic time series gained from experiments (like, for example, in space-time
catalysis (Kruel et al., 1992)). In the case of competing populations in 2 CSTR in
the dairy industry higher chaos might be an event {0 avoid. A steady state with sta-
ble (reliable) quantities of each variant of bacteria is likely to be more welcome than
hard to predict hyperchaotic oscillations. If, on the other hand, higher chaos occurs
in a matural surrounding of competing populations then deterministic interaction
leads to higher degrees of variability and to more effective mixing of configurations.
It is an open question whether, in an evolutionary context, complex dynamics can
be of any advantage for the system as a whole and thus turn competition of single
species into cooperativity on a higher level. And finally, if, in chemical and biochem-
ical reaction systems, higher chaos proves to play a role as (abstract) information
generator then the proposed principle suggests one way how coupled units might
reach maximum dynamical complexity.

C.B. thanks the Technical University of Denmark for generous support during
his stay in Lyngby.
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Figure Captions

Fig. 1: Bifurcation diagram for system with two populations of bacteria. Started

Fig.

Fig.

Fig.

Fig.

Fig.

‘with initial conditions:. (S)e.=..0.0,(B1)p. = 25000 11, (By)o = 25118 I,

all other initial conditions equal to zero, at p = 0.0050 min~" and followed
adiabatically with a step size of Ap = 2.0 10~° min~*. For each value of p
a transient trajectory of 10° min was omitted, and some cross-sections taken
at B, = B, were plotted. Numerical integration was performed using custom
made 5-6 order Runge-Kutta integration method with variable time step and

error control.

. 2: Detail of bifurcation diagram for two population model near p = 0.0040

min-!. For cross-sections taken at B, = B, variable I;; is plotted starting
with initial conditions: ) (S)o = 10.0 mg/l, (By)o = 20000 1%, (Bz2)o = 10000
I-1. all other initial conditions equal to zero; and b) (S)o = 0.0, (B1)e = 25000
17}, (By)p = 25118 172,

3. Chaotic attractors in the two population model in the neighborhood of a
crisis. 2) p = 0.00404 min~?,(S)o = 10.0 mg/}, (B1)o = 20000 171, (B2)e =
10000 1-%; and b) p = 0.00404 min~*,(85)p = 0.0,(B;)p = 25000 174, (B2)o =
25118 1-1; ¢) p = 0.00401 min~?, initial conditions as in 4b. Attractors in a)
and b) are coexisting, attractor in ¢) combines features of former coexisting

attractors.

4: Bifurcation diagram of three population model. Several coexisting solutions
are plotted, made from adiabatic scans with both increasing and decreasing p.

For 0.0 min~! < p < 0.0030 min~! only hyperchaos was found.

5: Quasiperiodic attractor in the three population model. p = 0.00625 min~,

cross-section taken at By = Bs.

6: Simple chaotic attractor in the three population model. p = 0.005505

min~?!, cross-section taken at B; = Ba.

7: "Kaplan-Yorke” chaotic attractor in the three population model. p =

0.00550 min~!, cross-section taken at By = Ba.
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Fig. 8: Hyperchaotic attractor in the three population model. p = 0.0035 min™,

cross-section taken at By = Bs.

Fig. 9: Hyper*-chaotic attractor in the four population model. p = 0.0030 min~*,

cross-section taken at B; = B..
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