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Introduction

Peng and co-workers [1] have analyzed DNA sequences looking for
long range correlations using the root mean sgquare fluctuation
F(l1}) about the average of the displacement, where 1 is a
correlation length. They introduced first a 1:1 map of the DNA
sequence to a so-called "DNA walk", defined by the rule that the
walker steps up (u{ij)=+1) if a pyrimidine occurs at the ith, step
along the DNA chain, whereas u{i)=-1 for a purine occuring at

position i. Then, F(l) is defined by the expression:

172
F(1l) = (Ay(1)1%-[ay(1))? (1)
with
Ay(l) = y{l #1)-y(1,) (2)
and
1
y(l) = } u(i) (3)

i=1
The bars represent an average over all 10 positions in the DNA

sequence.

They calculated the statistical quantity (1) for a variety of
DNA samples and for dJdifferent correlation lengths 1 and they
derived the following conclusions: i) F(l) obeys a power law:

F(1) = 1%
logi{F(1})

log(l)
1 in all examined cases. 1iii) Exons or c-DNA sequences give a20,35

(4)

ii) The slope o(l})= remains constant for a wide range of
which reflects a random walk and reveals absence of long-range
correlations. 1iv) Introns, as well as non transcribed DNA sequen-
ces give again constant but higher than 0.5 value for af(l),
indicating, as these authors conclude, a scale-invariant property
of DNA.




The above hypothesis has provoked several comments and
scepticism [2],[3],[4]. We have undertaken an investigation on the
lines of the work of Peng et al. trying to determine the structure

and properties of DNA sequences behaving as in eq.(4).

Some properties of the root mean square fluctuation function.

I. No significant difference is found between exon and intron
sequences, in agreement to refs.[3],[4]. However other approaches
lead to some degree of such a systematic difference [5].

II. The slope «(1l) is not always l-independent [3,4].

III. We investigated the behavior of «(l) for several artifici-
al DNA sequences. Our results are helpful in understanding what
happens in natural DNA sequences:

{a). Any random sequence of purines and pyrimidines with equal
probabilities (Ppu=Ppy} gives «(1)=0.5 (as expected).

{b). When PPu¢PPy, (1) remains constant again for a wide range of
1 but smaller than 0.5.

{c}. When PPu {or equivalently PPV) is linearly position-dependent
®{1l) reaches approximately constant values higher than 0.5.

{(d} When sequences with different and position independent
probabilities (case (b)) are put together, a(l) in the enlarsged
sequence increases for low 1 and for high 1 it stabilizes to a
value clearly higher of 0.5.

We see that in cases (¢) and {d) the resulting «f(l) is
approximétely constant and higher than 0.5, However, by
construction, these sequences do not possess any inherent self-
similarity or scale invariance in the clustering of their bases.
We found that the genome of the lambda phasge is such a naturally
occurring case, since it consists of four regions with clear-cut
properties from the point of view of purines~pyrimidines
probabilities (see Fig.la}. Each one of the first two regions A
and B present position independent but unequal probabilities. Each
one by itself has a value of a{l) slightly higher than 0.5 (Fig
1b, curves A,B). However, when put together (A-B) or with the rest
of the phage’s genome {A-B-C-D) it becomes a typical case of the
behavior (c¢) described above (see also ref.[3]). Moreover, the
region D presents a graded distribution of bases and as a consegqu-

ence, the corresponding a{l) (if taken alone) is relatively high.
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n-dupletes’ occurence and root mean square fluctuation function.

In many cases of natural exon or intron sequences, «(1l) is found
Pu’ PPy
are approximately equal and position independent. In order to

to be remarkably high-valued (and l-independent) even if P

extract some information about the particularities of the
structure of such sequences, we calculate (using a suitable
computer program) the probabilities of appearance of the 2"
n-duplets in it. Notice that the calculation includes all possible
reading frames {that 1is, partially superimposed n-duplets are
counted separately). It is found that in cases with PPuBPPy (a
common situation in DNA sequences) when a(1)>0.5 not justified by

the above cases, the n-duplet’s probabilities differ significantly

from the expected wvalue, which is 1/2n.
In order to test the direct dependence of the high «f{l) on

the n-duplet's probability distribution we constructed a computer .

program forming an artificial nucleotide sequence by means of a
random number generator and a set of 2" probability values for the
n-duplets of the resulting sequence. These 2" numbers is
convenient to be the corresponding probabilities of n-duplets of a

naturally occuring DNA sequence. The algorithm, for every next

pur. or pyr. added during the chain elongation, "pulls" a random

number taking also into account the relative probabilities of the
two possible n-duplets formed by the last n-1 nuclecotides combined
with the new. This is a purely "local" procedure which cannot
endow the chain with an? long-range structure formation, provided
that the random number generator is unbiased. We used the Linear
Congruential Method described by Knuth {81, and in order to test
its suitability we verified that when the probability for every
n-duplet 1is required to be 1/2n the resulting sequence is
characterized by a(1)=0,5.

In Fig.2 is presented with the line denoted by g the «(l) of
the sequence of the Human homolog of Drosophila female sterile
homeotic mRNA from the EMBO Databank (Code HSFSHG) while the 1line
denoted by r presents a random sequence with Pur./Pyr. ratio egual
to the gene's corresponding ratio. Curves 2, 5, 10, correspond to
artificial sequences produced by our program and using the same
random numbers we used for r and the probabilities of the
2-duplets, 5-duplets and 10-duplets of the g sequence

respectively. Without going into details we state the conclusion:




The consideration of the n-duplet’s probabilities for increasing n
approximates better the curve of the initial sequence g. It is
essestial that a considerable fraction of the correlation-measure
[x(1)-0.5] for the sequence g, can be reduced to n-duplets’
probabilities for n less or equal to 10. This is a kind of
behavior more complex than simple repetivity. Howéver this
situation too, does not imply self-similarity, fractal clustering,
1/f noise-type structure or other "authentic” long-range
correlations, at least as long as this is mimicked by artificial

sequences.

Conclusion

The above discussed results (see also refs.[2,6,7]) seem to
indicate that the behavior of the correlation function (1)
introduced by Peng et al. [1], may be significantly reducible to
short-range interactions. It remains open the question whether
there is a residual component with an "authentic" long-range
structure of the DNA sequence. Another point for further
elaboration is the consideration of 4 nucleotides in DNA sequences

and the resulting n-duplet probabilities.
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