Aeovl is a digital evolution platform designed to have a genetics model that is more similar to bacterial DNA than other digital evolution platforms

Batut, B., Parsons, D. P., Fischer, S., Beslon, G., & Knibbe, C. (2013). In silico experimental evolution: a tool to test evolutionary scenarios. BMC Bioinformatics, 14(15), S11. https://doi.org/10/gb8v6q
Knibbe, C., Coulon, A., Mazet, O., Fayard, J.-M., & Beslon, G. (2007). A Long-Term Evolutionary Pressure on the Amount of Noncoding DNA. Molecular Biology and Evolution, 24(10), 2344–2353. https://doi.org/10/br64s5
. The genetic code of each individual is processed through transcription and translation steps to produce a set of “proteins”. These proteins are represented as triangles, which are combined to approximate a curve. Each environment has an ideal curve, and an individual’s fitness is based on how closely it is able to approximate that curve.
Aevol Logo

Dolson, E., Wiser, M. J., & Ofria, C. A. (2016). The Effects of Evolution and Spatial Structure on Diversity in Biological Reserves. In C. Gershenson, T. Froese, J. M. Siqueiros, W. Aguilar, E. J. Izquierdo, & H. Sayama (Eds.), Artificial Life XV: Proceedings of the Fifteenth International Conference on Artificial Life (pp. 434–440). MIT Press. https://doi.org/10/gktxx7
Dolson, E., & Ofria, C. (2017). Spatial resource heterogeneity creates local hotspots of evolutionary potential. In C. Knibbe, G. Beslon, D. Parsons, D. Misevic, J. Rouzaud-Cornabas, N. Bredeche, S. Hassas, O. Simonin, & H. Soula (Eds.), ECAL 2017: The Fourteenth European Conference on Artificial Life (Vol. 29, pp. 122–129). MIT Press. https://doi.org/10.1162/isal_a_023
Dolson, E. L., Vostinar, A. E., Wiser, M. J., & Ofria, C. (2019). The MODES Toolbox: Measurements of Open-Ended Dynamics in Evolving Systems. Artificial Life, 25(1), 50–73. https://doi.org/10.1162/artl_a_00280
Kawaguchi, T., Suzuki, R., Arita, T., & Chan, B. (2021, July 19). Introducing asymptotics to the state-updating rule in Lenia. ALIFE 2021: The 2021 Conference on Artificial Life. https://doi.org/10/gk86dh
Etcheverry, M., Moulin-Frier, C., & Oudeyer, P.-Y. (2020). Hierarchically organized latent modules for exploratory search in morphogenetic systems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp. 4846–4859). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/33a5435d4f945aa6154b31a73bab3b73-Paper.pdf
Reinke, C., Etcheverry, M., & Oudeyer, P.-Y. (2020, April). Intrinsically Motivated Discovery of Diverse Patterns in Self-Organizing Systems. Eighth International Conference on Learning Representations. https://iclr.cc/virtual_2020/poster_rkg6sJHYDr.html
Chan, B. W.-C. (2019). Lenia: Biology of Artificial Life. Complex Systems, 28(3), 251–286. https://doi.org/10/ggf344
Chan, B. W.-C. (2020). Lenia and Expanded Universe. 221–229. https://doi.org/10/gm3wrq
Gerlee, P., & Anderson, A. R. A. (2007). An evolutionary hybrid cellular automaton model of solid tumour growth. Journal of Theoretical Biology, 246(4), 583–603. https://doi.org/10/dm5dqw
Scott, J. G., Fletcher, A. G., Anderson, A. R. A., & Maini, P. K. (2016). Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model. PLOS Computational Biology, 12(1), e1004712. https://doi.org/10/f8kdpz
Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena, 10(1), 1–35. https://doi.org/10/fkcg4x
Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(5985), 419–424. https://doi.org/10/chwrn9
Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput., 19(2), 189–223. https://doi.org/10/drt7t7
Brant, J. C., & Stanley, K. O. (2017). Minimal criterion coevolution: a new approach to open-ended search. 67–74. https://doi.org/10/ggcgzb
Moore, J. M., & Stanton, A. (2021). Objective Sampling Strategies for Generalized Locomotion Behavior with Lexicase Selection. ALIFE 2021: The 2021 Conference on Artificial Life. https://doi.org/10/gk86ct
Matthews, D., & Bongard, J. (2020). Crowd grounding: finding semantic and behavioral alignment through human robot interaction. The 2020 Conference on Artificial Life, 148–156. https://doi.org/10/gncq6n
University of Vermont, Burlington, VT 05401, Wagy, M., & Bongard, J. (2014). Collective Design of Robot Locomotion. 138–145. https://doi.org/10/gncq6m
Bryson, D. M., Wagner, A. P., & Ofria, C. (2014). There and back again: gene-processing hardware for the evolution and robotic deployment of robust navigation strategies. 689–696. https://doi.org/10/gncq6j
Moore, J. M., & Stanton, A. (2018). Tiebreaks and Diversity: Isolating Effects in Lexicase Selection. 590–597. https://doi.org/10/ffm3
Moore, J. M., & Stanton, A. (2017). Lexicase selection outperforms previous strategies for incremental evolution of virtual creature controllers. 290–297. https://doi.org/10.1162/isal_a_050
Moore, J., Clark, A., & McKinley, P. (2014). Evolutionary Robotics on the Web with WebGL and Javascript. ArXiv:1406.3337 [Cs]. http://arxiv.org/abs/1406.3337
Simon, G. A., Moore, J. M., Clark, A. J., & McKinley, P. K. (2018). Evo-ROS: integrating evolution and the robot operating system. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1386–1393. https://doi.org/10/gncq56
Moore, J. M., & Stanton, A. (2020). When Specialists Transition to Generalists: Evolutionary Pressure in Lexicase Selection. 719–726. https://doi.org/10/ffm4
Moore, J. M., & Stanton, A. (2019). The Limits of Lexicase Selection in an Evolutionary Robotics Task. 551–558. https://doi.org/10/fdz9
Moore, J. M., & Clark, A. J. (2021, July 19). Supervision and Evolution: Pretraining Neural Networks for Quadrupedal Locomotion. ALIFE 2021: The 2021 Conference on Artificial Life. https://doi.org/10/gk86b8
Kriegman, S., Cheney, N., & Bongard, J. (2018). How morphological development can guide evolution. Scientific Reports, 8(1), 13934. https://doi.org/10/gfbkz9
Cheney, N., MacCurdy, R., Clune, J., & Lipson, H. (2014). Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution, 7(1), 11–23. https://doi.org/10/ggdr7m
Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals. Nature, 521(7553), 503–507. https://doi.org/10/gdg46t
Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences, 117(4), 1853–1859. https://doi.org/10/gghxd3
Bongard, J. (2010). The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object Manipulation. Artificial Life, 16(3), 201–223. https://doi.org/10/fnx622
Lipson, H., Sunspiral, V., Bongard, J., & Cheney, N. (2016). On the Difficulty of Co-Optimizing Morphology and Control in Evolved Virtual Creatures. 226–233. https://doi.org/10.1162/978-0-262-33936-0-ch042
Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406(6799), 974–978. https://doi.org/10/c62vc2
Sims, K. (1994). Evolving 3D Morphology and Behavior by Competition. Artificial Life, 1(4), 353–372. https://doi.org/10/czj6hc
Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM, 56(8), 74–83. https://doi.org/10/gkdf3m
Čejková, J., Banno, T., Hanczyc, M. M., & Štěpánek, F. (2017). Droplets As Liquid Robots. Artificial Life, 23(4), 528–549. https://doi.org/10/gcj4gc
Crombach, A., & Hogeweg, P. (2009). Evolution of resource cycling in ecosystems and individuals. BMC Evolutionary Biology, 9(1), 122. https://doi.org/10/bgqt4p
Lalejini, A., Dolson, E., Bohm, C., Ferguson, A. J., Parsons, D. P., Rainford, P. F., Richmond, P., & Ofria, C. (2019). Data Standards for Artificial Life Software. 507–514. https://doi.org/10/gmbmp9
Pontes, A. C., Whalen, I., Mitchell, A. C., Mobley, R. B., Dyer, F. C., & Ofria, C. (2017). Investigations into the evolutionary origin of navigation and learning. 358–359. https://doi.org/10.1162/isal_a_060
Nahum, J. R., West, J., Althouse, B. M., Zaman, L., Ofria, C., & Kerr, B. (2017). Improved adaptation in exogenously and endogenously changing environments. 306–313. https://doi.org/10.1162/isal_a_052
Pontes, A. C., Mobley, R. B., Ofria, C., Adami, C., & Dyer, F. C. (2020). The Evolutionary Origin of Associative Learning. The American Naturalist, 195(1), E1–E19. https://doi.org/10/gk9zz7
Moreno, M. A., & Ofria, C. (2019). Toward Open-Ended Fraternal Transitions in Individuality. Artificial Life, 25(2), 117–133. https://doi.org/10/gk9zz6
Knoester, D. B., Ramirez, A. J., McKinley, P. K., & Cheng, B. H. C. (2009). Evolution of robust data distribution among digital organisms. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 137–144. https://doi.org/10/bmdp3f
Hang, D., Torng, E., Ofria, C., & Schmidt, T. M. (2007). The effect of natural selection on the performance of maximum parsimony. BMC Evolutionary Biology, 7(1), 94. https://doi.org/10/fkbm9g
Goldsby, H. J., Knoester, D. B., Kerr, B., & Ofria, C. (2014). The Effect of Conflicting Pressures on the Evolution of Division of Labor. PLOS ONE, 9(8), e102713. https://doi.org/10/gk9zz4
Misevic, D., Ofria, C., & Lenski, R. E. (2010). Experiments with Digital Organisms on the Origin and Maintenance of Sex in Changing Environments. Journal of Heredity, 101(suppl_1), S46–S54. https://doi.org/10/dnhvgn
Goings, S., Clune, J., Ofria, C., & Pennock, R. T. (2004). Kin-Selection: The Rise and Fall of Kin-Cheaters. https://doi.org/10/gk9zzx
Fortuna, M. A., Zaman, L., Ofria, C., & Wagner, A. (2017). The genotype-phenotype map of an evolving digital organism. PLOS Computational Biology, 13(2), e1005414. https://doi.org/10/f9tgpr
Knoester, D. B., McKinley, P. K., & Ofria, C. A. (2007). Using group selection to evolve leadership in populations of self-replicating digital organisms. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, 293–300. https://doi.org/10/bz5jqx
Yedid, G., Stredwick, J., Ofria, C. A., & Agapow, P.-M. (2012). A Comparison of the Effects of Random and Selective Mass Extinctions on Erosion of Evolutionary History in Communities of Digital Organisms. PLOS ONE, 7(5), e37233. https://doi.org/10/f32m42
Ofria, C., Huang, W., & Torng, E. (2008). On the Gradual Evolution of Complexity and the Sudden Emergence of Complex Features. Artificial Life, 14(3), 255–263. https://doi.org/10/d4vcpt