Aeovl is a digital evolution platform designed to have a genetics model that is more similar to bacterial DNA than other digital evolution platforms

Batut, B., Parsons, D. P., Fischer, S., Beslon, G., & Knibbe, C. (2013). In silico experimental evolution: a tool to test evolutionary scenarios. BMC Bioinformatics, 14(15), S11.
Knibbe, C., Coulon, A., Mazet, O., Fayard, J.-M., & Beslon, G. (2007). A Long-Term Evolutionary Pressure on the Amount of Noncoding DNA. Molecular Biology and Evolution, 24(10), 2344–2353.
. The genetic code of each individual is processed through transcription and translation steps to produce a set of “proteins”. These proteins are represented as triangles, which are combined to approximate a curve. Each environment has an ideal curve, and an individual’s fitness is based on how closely it is able to approximate that curve.
Aevol Logo

Dolson, E., Wiser, M. J., & Ofria, C. A. (2016). The Effects of Evolution and Spatial Structure on Diversity in Biological Reserves. In C. Gershenson, T. Froese, J. M. Siqueiros, W. Aguilar, E. J. Izquierdo, & H. Sayama (Eds.), Artificial Life XV: Proceedings of the Fifteenth International Conference on Artificial Life (pp. 434–440). MIT Press.
Dolson, E., & Ofria, C. (2017). Spatial resource heterogeneity creates local hotspots of evolutionary potential. In C. Knibbe, G. Beslon, D. Parsons, D. Misevic, J. Rouzaud-Cornabas, N. Bredeche, S. Hassas, O. Simonin, & H. Soula (Eds.), ECAL 2017: The Fourteenth European Conference on Artificial Life (Vol. 29, pp. 122–129). MIT Press.
Dolson, E. L., Vostinar, A. E., Wiser, M. J., & Ofria, C. (2019). The MODES Toolbox: Measurements of Open-Ended Dynamics in Evolving Systems. Artificial Life, 25(1), 50–73.
Kawaguchi, T., Suzuki, R., Arita, T., & Chan, B. (2021, July 19). Introducing asymptotics to the state-updating rule in Lenia. ALIFE 2021: The 2021 Conference on Artificial Life.
Etcheverry, M., Moulin-Frier, C., & Oudeyer, P.-Y. (2020). Hierarchically organized latent modules for exploratory search in morphogenetic systems. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp. 4846–4859). Curran Associates, Inc.
Reinke, C., Etcheverry, M., & Oudeyer, P.-Y. (2020, April). Intrinsically Motivated Discovery of Diverse Patterns in Self-Organizing Systems. Eighth International Conference on Learning Representations.
Chan, B. W.-C. (2019). Lenia: Biology of Artificial Life. Complex Systems, 28(3), 251–286.
Chan, B. W.-C. (2020). Lenia and Expanded Universe. 221–229.
Gerlee, P., & Anderson, A. R. A. (2007). An evolutionary hybrid cellular automaton model of solid tumour growth. Journal of Theoretical Biology, 246(4), 583–603.
Scott, J. G., Fletcher, A. G., Anderson, A. R. A., & Maini, P. K. (2016). Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model. PLOS Computational Biology, 12(1), e1004712.
Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena, 10(1), 1–35.
Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(5985), 419–424.
Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput., 19(2), 189–223.
Brant, J. C., & Stanley, K. O. (2017). Minimal criterion coevolution: a new approach to open-ended search. 67–74.
Moore, J. M., & Stanton, A. (2021). Objective Sampling Strategies for Generalized Locomotion Behavior with Lexicase Selection. ALIFE 2021: The 2021 Conference on Artificial Life.
Matthews, D., & Bongard, J. (2020). Crowd grounding: finding semantic and behavioral alignment through human robot interaction. The 2020 Conference on Artificial Life, 148–156.
University of Vermont, Burlington, VT 05401, Wagy, M., & Bongard, J. (2014). Collective Design of Robot Locomotion. 138–145.
Bryson, D. M., Wagner, A. P., & Ofria, C. (2014). There and back again: gene-processing hardware for the evolution and robotic deployment of robust navigation strategies. 689–696.
Moore, J. M., & Stanton, A. (2018). Tiebreaks and Diversity: Isolating Effects in Lexicase Selection. 590–597.
Moore, J. M., & Stanton, A. (2017). Lexicase selection outperforms previous strategies for incremental evolution of virtual creature controllers. 290–297.
Moore, J., Clark, A., & McKinley, P. (2014). Evolutionary Robotics on the Web with WebGL and Javascript. ArXiv:1406.3337 [Cs].
Simon, G. A., Moore, J. M., Clark, A. J., & McKinley, P. K. (2018). Evo-ROS: integrating evolution and the robot operating system. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1386–1393.
Moore, J. M., & Stanton, A. (2020). When Specialists Transition to Generalists: Evolutionary Pressure in Lexicase Selection. 719–726.
Moore, J. M., & Stanton, A. (2019). The Limits of Lexicase Selection in an Evolutionary Robotics Task. 551–558.
Moore, J. M., & Clark, A. J. (2021, July 19). Supervision and Evolution: Pretraining Neural Networks for Quadrupedal Locomotion. ALIFE 2021: The 2021 Conference on Artificial Life.
Kriegman, S., Cheney, N., & Bongard, J. (2018). How morphological development can guide evolution. Scientific Reports, 8(1), 13934.
Cheney, N., MacCurdy, R., Clune, J., & Lipson, H. (2014). Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution, 7(1), 11–23.
Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals. Nature, 521(7553), 503–507.
Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences, 117(4), 1853–1859.
Bongard, J. (2010). The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object Manipulation. Artificial Life, 16(3), 201–223.
Lipson, H., Sunspiral, V., Bongard, J., & Cheney, N. (2016). On the Difficulty of Co-Optimizing Morphology and Control in Evolved Virtual Creatures. 226–233.
Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 406(6799), 974–978.
Sims, K. (1994). Evolving 3D Morphology and Behavior by Competition. Artificial Life, 1(4), 353–372.
Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM, 56(8), 74–83.
Čejková, J., Banno, T., Hanczyc, M. M., & Štěpánek, F. (2017). Droplets As Liquid Robots. Artificial Life, 23(4), 528–549.
Crombach, A., & Hogeweg, P. (2009). Evolution of resource cycling in ecosystems and individuals. BMC Evolutionary Biology, 9(1), 122.
Lalejini, A., Dolson, E., Bohm, C., Ferguson, A. J., Parsons, D. P., Rainford, P. F., Richmond, P., & Ofria, C. (2019). Data Standards for Artificial Life Software. 507–514.
Pontes, A. C., Whalen, I., Mitchell, A. C., Mobley, R. B., Dyer, F. C., & Ofria, C. (2017). Investigations into the evolutionary origin of navigation and learning. 358–359.
Nahum, J. R., West, J., Althouse, B. M., Zaman, L., Ofria, C., & Kerr, B. (2017). Improved adaptation in exogenously and endogenously changing environments. 306–313.
Pontes, A. C., Mobley, R. B., Ofria, C., Adami, C., & Dyer, F. C. (2020). The Evolutionary Origin of Associative Learning. The American Naturalist, 195(1), E1–E19.
Moreno, M. A., & Ofria, C. (2019). Toward Open-Ended Fraternal Transitions in Individuality. Artificial Life, 25(2), 117–133.
Knoester, D. B., Ramirez, A. J., McKinley, P. K., & Cheng, B. H. C. (2009). Evolution of robust data distribution among digital organisms. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 137–144.
Hang, D., Torng, E., Ofria, C., & Schmidt, T. M. (2007). The effect of natural selection on the performance of maximum parsimony. BMC Evolutionary Biology, 7(1), 94.
Goldsby, H. J., Knoester, D. B., Kerr, B., & Ofria, C. (2014). The Effect of Conflicting Pressures on the Evolution of Division of Labor. PLOS ONE, 9(8), e102713.
Misevic, D., Ofria, C., & Lenski, R. E. (2010). Experiments with Digital Organisms on the Origin and Maintenance of Sex in Changing Environments. Journal of Heredity, 101(suppl_1), S46–S54.
Goings, S., Clune, J., Ofria, C., & Pennock, R. T. (2004). Kin-Selection: The Rise and Fall of Kin-Cheaters.
Fortuna, M. A., Zaman, L., Ofria, C., & Wagner, A. (2017). The genotype-phenotype map of an evolving digital organism. PLOS Computational Biology, 13(2), e1005414.
Knoester, D. B., McKinley, P. K., & Ofria, C. A. (2007). Using group selection to evolve leadership in populations of self-replicating digital organisms. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, 293–300.
Yedid, G., Stredwick, J., Ofria, C. A., & Agapow, P.-M. (2012). A Comparison of the Effects of Random and Selective Mass Extinctions on Erosion of Evolutionary History in Communities of Digital Organisms. PLOS ONE, 7(5), e37233.
Ofria, C., Huang, W., & Torng, E. (2008). On the Gradual Evolution of Complexity and the Sudden Emergence of Complex Features. Artificial Life, 14(3), 255–263.