Below is the full bibliography of references used in this Encyclopedia. For a searchable version of this bibliography or to export the references in a format of your choice, see the ISAL Zotero Library

Adami, C. (1998). Introduction to artificial life. Springer.
Adami, C. (2021). A Brief History of Artificial Intelligence Research. Artificial Life, 27(2), 131–137.
Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the National Academy of Sciences, 97(9), 4463–4468.
Andrus, D. C. (2005). Toward a Complex Adaptive Intelligence Community. Studies in Intelligence, 49.
Armstrong, R. (2015). How do the origins of life sciences influence 21st century design thinking? 2–11.
Baile, E. M., Dahlby, R. W., Wiggs, B. R., & Pare, P. D. (1985). Role of tracheal and bronchial circulation in respiratory heat exchange. Journal of Applied Physiology, 58(1), 217–222.
Baldock, C., Oberhauser, A. F., Ma, L., Lammie, D., Siegler, V., Mithieux, S. M., Tu, Y., Chow, J. Y. H., Suleman, F., Malfois, M., Rogers, S., Guo, L., Irving, T. C., Wess, T. J., & Weiss, A. S. (2011). Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proceedings of the National Academy of Sciences, 108(11), 4322–4327.
Batut, B., Parsons, D. P., Fischer, S., Beslon, G., & Knibbe, C. (2013). In silico experimental evolution: a tool to test evolutionary scenarios. BMC Bioinformatics, 14(15), S11.
Beckmann, B. E., McKinley, P. K., Knoester, D. B., & Ofria, C. (2007). Evolution of Cooperative Information Gathering in Self-Replicating Digital Organisms. First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), 65–76.
Beckmann, B. E., McKinley, P. K., & Ofria, C. (2007). Evolution of an Adaptive Sleep Response in Digital Organisms. In F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in Artificial Life (pp. 233–242). Springer.
Bedau, M. A., Snyder, E., & Packard, N. H. (1998). A classification of long-term evolutionary dynamics. In C. Adami, R. K. Belew, H. Kitano, & C. E. Taylor (Eds.), Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life (pp. 228–237). MIT Press.
Bedau, M. A., Snyder, E., Brown, C. T., & Packard, N. H. (1997). A comparison of evolutionary activity in artificial evolving systems and in the biosphere. In P. Husbands & I. Harvey (Eds.), Proceedings of the Fourth European Conference on Artificial Life, ECAL97 (pp. 125–134). MIT Press.
Benner, S. A., & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533–543.
Bhagwat, V. M., & Ramachandran, B. V. (1975). Malathion A and B esterases of mouse liver-I. Biochemical Pharmacology, 24(18), 1713–1717.
Bhagwat, V. M., & Ramachandran, B. V. (1975). Malathion A and B esterases of mouse liver-I. Biochemical Pharmacology, 24(18), 1713–1717.
Birhane, A. (2021). The Impossibility of Automating Ambiguity. Artificial Life, 27(1), 44–61.
Biswas, R., Bryson, D., Ofria, C., & Wagner, A. (2014). Causes vs Benefits in the Evolution of Prey Grouping. 641–648.
Boden, M. A. (Ed.). (1996). The philosophy of artificial life. Oxford University Press.
Bohm, C., G., N. C., & Hintze, A. (2017). MABE (Modular Agent Based Evolver): A framework for digital evolution research. Artificial Life Conference Proceedings, 76–83.
Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM, 56(8), 74–83.
Bongard, J. (2010). The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object Manipulation. Artificial Life, 16(3), 201–223.
Borg, J. M., & Channon, A. (2021). The Effect of Social Information Use Without Learning on the Evolution of Social Behavior. Artificial Life, 26(4), 431–454.
Brant, J. C., & Stanley, K. O. (2017). Minimal criterion coevolution: a new approach to open-ended search. 67–74.
Bryson, D. M., & Ofria, C. (2013). Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures. PLOS ONE, 8(12), e83242.
Bryson, D. M., Wagner, A. P., & Ofria, C. (2014). There and back again: gene-processing hardware for the evolution and robotic deployment of robust navigation strategies. 689–696.
Buehler, M. J., & Wong, S. Y. (2007). Entropic Elasticity Controls Nanomechanics of Single Tropocollagen Molecules. Biophysical Journal, 93(1), 37–43.
Bull, L. (2021). On the Emergence of Intersexual Selection: Arbitrary Trait Preference Improves Female-Male Coevolution. Artificial Life, 27(1), 15–25.
Bull, L. (2021). Are Artificial Dendrites Useful in Neuro-Evolution? Artificial Life, 27(2), 75–79.
Cameron, A., Dorchen, S., Doore, S., & Vostinar, A. E. (2022). Keep Your Frenemies Closer: Bacteriophage That Benefit Their Hosts Evolve to be More Temperate. The 2022 Conference on Artificial Life. The 2022 Conference on Artificial Life, Online.
Canino-Koning, R., Wiser, M. J., & Ofria, C. (2019). Fluctuating environments select for short-term phenotypic variation leading to long-term exploration. PLOS Computational Biology, 15(4), e1006445.
Çatak, J., Ozilgen, M., & Yilmaz, B. (2018). Thermodynamic analysis of human respiratory (diaphragm) skeletal muscles. European Respiratory Journal, 52(suppl 62), PA2447.
Čejková, J., Banno, T., Hanczyc, M. M., & Štěpánek, F. (2017). Droplets As Liquid Robots. Artificial Life, 23(4), 528–549.
Chan, B. W.-C. (2020). Lenia and Expanded Universe. 221–229.
Chan, B. W.-C. (2019). Lenia: Biology of Artificial Life. Complex Systems, 28(3), 251–286.
Chandler, C. H., Ofria, C., & Dworkin, I. (2013). Runaway Sexual Selection Leads to Good Genes. Evolution, 67(1), 110–119.
Channon, A. (2003). Improving and Still Passing the ALife Test: Component-normalised Activity Statistics Classify Evolution in Geb As Unbounded. In R. K. Standish, M. A. Bedau, & H. A. Abbass (Eds.), Proceedings of the Eighth International Conference on Artificial Life (pp. 173–181). MIT Press.
Channon, A. (2001). Passing the ALife test: activity statistics classify evolution in Geb as unbounded. In J. Kelemen & P. Sosík (Eds.), Advances in Artificial Life (pp. 417–426). Springer Berlin Heidelberg.
Channon, A. (2019). Maximum Individual Complexity is Indefinitely Scalable in Geb. Artificial Life, 25, 134–144.
Cheney, N., MacCurdy, R., Clune, J., & Lipson, H. (2014). Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution, 7(1), 11–23.
Chow, S. S., Wilke, C. O., Ofria, C., Lenski, R. E., & Adami, C. (2004). Adaptive Radiation from Resource Competition in Digital Organisms. Science, 305(5680), 84–86.
Clark, E., Hickinbotham, S., & Nellis, A. (n.d.). Research Using the Stringmol Artificial Chemistry.
Clune, J., Ofria, C., & Pennock, R. T. (2007). Investigating the Emergence of Phenotypic Plasticity in Evolving Digital Organisms. In F. Almeida e Costa, L. M. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in Artificial Life (Vol. 4648, pp. 74–83). Springer Berlin Heidelberg.
Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F., & Sanjuán, R. (2008). Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes. PLOS Computational Biology, 4(9), e1000187.
Clune, J., Goldsby, H. J., Ofria, C., & Pennock, R. T. (2011). Selective pressures for accurate altruism targeting: evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory. Proceedings of the Royal Society B: Biological Sciences, 278(1706), 666–674.
Clune, J., Pennock, R. T., Ofria, C., & Lenski, R. E. (2012). Ontogeny Tends to Recapitulate Phylogeny in Digital Organisms. The American Naturalist, 180(3), E54–E63.
Cobb, P. (2015). The Ripple Effect of the CISO in the C-Suite. Security Intelligence.
Cooper, T. F., & Ofria, C. (2002). Evolution of stable ecosystems in populations of digital organisms. Proceedings of the Eighth International Conference on Artificial Life, 227–232.
Corominas-Murtra, B., Seoane, L. F., & Solé, R. (2018). Zipf’s Law, unbounded complexity and open-ended evolution. Journal of The Royal Society Interface, 15(149), 20180395.
Covert, A. W., Lenski, R. E., Wilke, C. O., & Ofria, C. (2013). Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proceedings of the National Academy of Sciences, 110(34), E3171–E3178.
Crombach, A., & Hogeweg, P. (2009). Evolution of resource cycling in ecosystems and individuals. BMC Evolutionary Biology, 9(1), 122.