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Abstract

Social insect colonies have evolved collective foraging strate-
gies that consist of many autonomous individuals operating
without centralized control. The ant colony optimization
(ACO) family of algorithms mimics this behavior to approx-
imate solutions to computationally difficult problems. ACO
algorithms focus on pheromone recruitment, which is only
one of several known biological foraging strategies. Here,
we use a spatial agent-based model to simulate three forag-
ing strategies: pheromone recruitment, nest recruitment, and
random search. We compare their performance across two
environmental dimensions: spatial distribution of food re-
sources and resource volatility. We find that pheromone re-
cruitment performs only marginally better than the simpler
nest recruitment strategy in most environments. Further, both
strategies become progressively less efficient as resource dis-
persion and volatility increase. In the extreme, with highly
dispersed or volatile resources, the simplest strategy of all,
random search, outperforms the other two. Our results sug-
gest that in many environments, pheromone-based strategies
may not be required and that simpler methods like random
search or nest recruitment may be sufficient, both for biolog-
ical ants and computational methods.

Introduction

Social insects are notable for their ability to harness large
populations of simple individuals without any apparent cen-
tralized control to solve complex problems, such as find-
ing food and building nests (Ho6lldobler and Wilson, 1990).
Computer scientists have long been interested in ant forag-
ing behaviors, particularly as inspiration for ant colony opti-
mization (ACO) search and optimization algorithms (Dorigo
etal., 2006). These algorithms are based on one aspect of ant
foraging called stigmergy (Theraulaz and Bonabeau, 1999).
In this context, stigmergy refers to ants that alter their envi-
ronment by depositing chemical markers called pheromones
to indicate promising search directions. As they accumu-
late, the chemical markers form a trail leading from the ants’
nest to a food source. ACO algorithms have been applied
to many computational problems, including network routing
(Di Caro and Dorigo, 1998), the Traveling Salesman Prob-
lem (Dorigo and Gambardella, 1997), and task scheduling
(Merkle et al., 2002).

However, recent work has shown that chemical recruit-
ment strategies in isolation may be suboptimal in the wrong

environment. Evison et al. (2008) show that visual land-
marks and pheromone contribute equally to an ant’s abil-
ity to locate a previously encountered food source, and that
the two may have a complementary function. Pheromone
trails may also lead to suboptimal solutions, directing ants
(or algorithms) to lower-quality resources before a richer
location can be detected (Beckers et al., 1990; Robinson
et al., 2008), although these traps may be avoided using
repellent pheromone (Czaczkes, 2014). The drawbacks to
chemical recruitment are not limited to ant foraging, nor to
the problem of reinforcing the wrong path in a stable en-
vironment. Previous work has shown that T cells that rely
on chemical gradients to locate sources of infection can be-
come stuck when the infection spreads faster than the sig-
nal can diffuse (Levin et al., unpublished). The drawbacks
of chemical recruitment strategies suggests that successful
use of ACO requires an understanding of the appropriate do-
mains where these algorithms are applied, and which other
foraging strategies might be leveraged in different domains.
There is relatively little work which investigates other ant
foraging techniques or classifies which environments are
most appropriate for which foraging strategies (Pratt, 2008;
Schmolke, 2009; Pinter-Wollman et al., 2012).

There are many different foraging strategies employed
by different ant species (Lanan, 2014). The desert ant,
Aphenogaster cockerelli, forages individually with site fi-
delity (Sanders and Gordon, 2002). Site fidelity may
be a more effective foraging strategy than pheromone re-
cruitment in some contexts (Letendre and Moses, 2013).
The acorn ant, Temnothorax albipennis, uses tandem run-
ning where informed ants that have located a food source
lead naive ants to the food, without using any detectable
pheromone trail (Franks and Richardson, 2006). Ants such
as Formica cinerea establish long-term trunk trails, where
massive numbers of ants follow one another to stable sources
of food (Marké and Czechowski, 2012). The predatory
Pheidologeton diversus raid smaller ant species and termites
when colonies are discovered (Moffett, 1988).

In this paper, we explore the hypothesis that the best for-
aging strategy is determined in large part by the environ-
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ment in which the ants live. We focus on how food resources
are distributed and their temporal variability, which we call
volatility. This hypothesis is supported by the observation
that animal species use different strategies in different envi-
ronments (Kacelnik and Bateson, 1996).

We investigate this hypothesis with an agent-based model
of ant foraging. We model three different ant-based foraging
strategies, which subsume most strategies observed in na-
ture: solitary random walk, nest recruitment, and pheromone
recruitment. We quantify the efficacy of each strategy across
two environmental dimensions, the spatial layout of re-
sources and the volatility of resources, and we evaluate the
ability of each strategy to adapt to different environments.

We find that both pheromone and nest recruitment per-
form best in clustered stable environments, and their effi-
ciency declines as food dispersion and volatility increase.
To be effective, the recruitment strategies each require that
the ants complete at least two round trips to a location be-
fore the food disappears (volatility). Because random search
has no memory, volatility does not strongly affect its perfor-
mance, and it performs well in environments where food is
highly dispersed.

Recruitment strategies that have been optimized for one
environment can be detrimental in other environments. For
example, when we optimized the (nest and pheromone)
recruitment strategies for stable environments, they per-
formed poorly when volatility was increased, and in the
extreme worse than random search. However, in environ-
ments with upredictable volatility, nest and pheromone re-
cruitment strategies outperform random search, suggesting
that recruitment is a powerful mechanism even in highly
randomized environments. Finally, in environments where
resource locations are sufficiently predictable, pheromone-
based strategies are efficient, similar to Flanagan et al.
(2011). In most cases, however, nest recruitment performs
similarly to pheromones and requires a simpler mechanism
(local interaction).

In addition to specific insights about ant foraging strate-
gies, our results suggest that new approaches could be
adapted into ACO algorithms. Since phereomone-based re-
cruitment is nontrivial to implement in a fully distributed
artificial system, nest recruitment could be an attractive al-
ternative. Moreover, the modeling approach used here could
be used to classify more generally which distributed search
strategies perform best in which environments.

Model Description

We developed an agent-based model to study the effective-
ness of various foraging strategies in different environments
(Fig. 1), focusing on the spatial and temporal distribution
of food resources on a flat surface. Our model extends
the central-place foraging algorithm (CPFA) and swarm
robotics platform studied in Hecker and Moses (2015), by
including volatile resources and new foraging strategies.
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Figure 1: Model Conceptualization. The model is initial-
ized on a square grid with the nest in the center. A) Food
is randomly placed in patches a minimum distance from the
nest. B) Food from a single patch moves at a constant rate
to a new patch (volatility). C) Ants perform a random walk
from the nest. An ant’s angular trajectory 6 is varied at each
time step by choosing from a normal distribution: N (6, o).
D) An ant lays a pheromone trail (decays exponentially) to a
specific location if it detects enough food in its vicinity. E)
Ants returning from a successful foraging search recruit ants
resting at the nest.

The model consists of a two-dimensional grid with discrete
food units (analogous to seeds) placed on the grid before
the run begins. There is a single nest, where ants congre-
gate, leave to search for food, return with food if success-
ful, and possibly recruit other ants to follow them to a food
source. Food sources can be arranged in different distribu-
tions (e.g., grouped together in a small number of clumps
or dispersed randomly across the environment). Volatility is
modeled as movement—food moves at a rate parameterized
by the model. In the experiments for this paper, we var-
ied the number of clustered food piles and the rate at which
piles move, while holding the total amount of food constant
(Fig. 1 A and B).

A recent paper by Lanan (2014) catalogs certain ant forag-
ing strategies used by monodomous (single nest) ant species:
random search, site fidelity, tandem running, pheromone re-
cruitment, nest recruitment, and trunk trails. Two of these
strategies, tandem running and trunk trails, closely resemble
other strategies: nest recruitment is similar to tandem run-
ning and pheromone recruitment is similar to trunk trails.
Therefore, we model three distinct foraging strategies: ran-
dom search, pheromone recruitment, and nest recruitment
(Fig 1 C-E), where each strategy is designed to mimic for-
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Figure 2: Ant Foraging States. Ants are initialized at
the nest in either the resting (with nest recruitment) or
searching state. Ants transition between behaviors based
upon cues from the environment, random chance, and stim-
ulation by other ants or pheromone.

aging strategies used by real ants (Moffett, 1988; Holldobler
and Wilson, 1990; Sanders and Gordon, 2002; Marké and
Czechowski, 2012). We enable site fidelity in both recruit-
ment strategies based on field observations.

e Random Search: Individual ants leave the nest all at
once and perform a correlated random walk through the
two-dimensional space. Ants continue searching until
they encounter food. Ants that encounter food pick it up,
return to the nest, and begin a new search. The correlated
random walk works by choosing a new trajectory for each
ant from a normal distribution N (6, o,,), centered on the
ant’s current trajectory 6. Ants using the random search
strategy have no memory and perform no recruitment.

e Pheromone Recruitment is implemented following the
central-place foraging algorithm (CPFA) detailed in
Hecker and Moses (2015). Ants leave the nest and search
randomly as described above. Ants may give up search-
ing at any time with a probability p, and return to the
nest. However, if an ant finds food at any point it picks
it up and immediately checks the neighboring 8 grid cells
for more. Next, it decides to reinforce the location with
probability P(k; \,), where P represents the cumulative
Poisson distribution and k is the amount of food found in
the immediate neighborhood. The ant may also use site
fidelity to return to the previously visited location with
probability P(k; A¢). It then returns to the nest, creating
the trail upon its arrival if P(k; \,) > U(0, 1); the trail
decays at a rate of o,. Subsequent ants may follow this
trail to the same location before the trail evaporates. Re-
cruited ants perform an informed correlated random walk
upon arrival and may also lay a pheromone trail back to
the nest.

] Abbr. \ Name

Distribution

Table 1: Ant parameters tuned by the GA. Parameters were
initialized randomly using either a uniform distribution (U)
or an exponential distribution (F). o, and J; define turning
parameters. pgq, pz, and p, are probability rates. Ay and A,
are Poisson probability parameters. ¢, is the pheromone de-
cay rate. Parameters extend the model described in Hecker
and Moses (2015). As in Figure 2: blue, o, is used in by
all three strategies, green parameters are used by the two re-
cruitment strategies, yellow, ¢,, is used by pheromone only,
and red parameters are used by nest recruitment only.

o Nest Recruitment: Ants probabilistically leave the nest
and use random search to look for food. Ants that are not
actively searching remain in the nest. As in pheromone
recruitment, ants give up and return to the nest with prob-
ability pg4, and ants that find food pick up the food, survey
the area, and if they find food above the threshold, they re-
turn directly to the nest and recruit more ants (otherwise
they return to the nest and being a new solitary search).
The number of ants recruited on a single return to the nest
is a fraction of the ants currently in the nest, probabilis-
tic determined by p,.. The original ant and the newly re-
cruited ants then return directly to the previous location
and perform an informed correlated random walk.

An informed random walk behaves as the uninformed ran-
dom walk, but with a turning parameter of 47 that decays at
arate ¢; until it reaches o,.

These three strategies are well known in the ant litera-
ture, but the details can vary among individual species, and
in some cases the exact parameters are simply unknown or
difficult to measure accurately, such as the nest recruitment
rate and the pheromone decay rate. Therefore we use a ge-
netic algorithm (GA) to select each parameter for each en-
vironment. The GA-evolved parameters can significantly
alter the outcome of a specific strategy. For example, in
the pheromone recruitment strategy, if the decay rate of the
pheromone is very high, it will dissipate before it is able
to be utilized by other ants. This effectively reduces the
pheromone recruitment strategy to random search.

Ants begin each simulation in the nest at the center of the
grid. Ant behavior is governed by the eight parameters listed
in Table 1. Behavior transitions among four possible states:
resting, traveling, searching, and returning
(Fig. 2) at rates determined by the evolved parameters.
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To study the effects of different environments on opti-
mal foraging strategies, we model two environmental di-
mensions: the spatial distribution of food and the volatility
of food, where food is a discrete unit, analogous to a seed.

o Spatial Distribution: Food is placed randomly in space
at one of one, four, or 16 piles, or distributed uniformly
(Fig. 1A). These values were chosen to correspond to
food distributions in known ant habitats (Holldobler and
Wilson, 1990; Sanders and Gordon, 2002; Marké and
Czechowski, 2012). Piles were never placed within 20
grid cells of the nest.

e Food Volatility: Food piles are moved at a specified rate
to new locations in the grid to simulate growth and decay
of resources (Fig. 1B). The volatility rate corresponds to
the number of times an ant can make a round trip from
the nest to a food pile before the pile has moved. Food
volatility was set to be either stable (no volatility), or it
was moved at a rate of ten, five or 2.5 round trips. Rates
of less than 2.5 round trips eliminated the value of re-
cruitment, while rates above 10 round trips did not show
behavioral difference from the stable scenario.

Experimental Design

We use the model to assess the performance of three differ-
ent strategies across 16 different environments, using a GA
to find good parameter values for each strategy/environment
pair. This process mimics natural selection, which occurred
over evolutionary time scales as each ant species evolved.
Having tuned each strategy for a specific environment, we
then compare their performance. Each run of the simulation
evaluates a single colony of 64 ants foraging on a 200 x 200
two-dimensional grid over one simulated hour. Each cell in
the grid represents an 8 x 8 cm patch, so the model sim-
ulates a 16 x 16 m area of flat land. The number of ants,
spatial extent of the search, and its duration were each based
on small desert seed-harvester ant colonies (Flanagan et al.,
2012). Selected runs using 320 ants showed results consis-
tent with the main model (data not shown). The simulated
ants move through the grid one cell per time-step (Moore
neighborhood), foraging for 1,280 food resources (seeds)
where each cell can contain at most one seed.

We use a generational GA with population size of 25,
runs of 50 generations, tournament selection (tournament
size of 2), uniform crossover, 10% Gaussian mutation, and
elitism, where the single best individual in each generation
is retained unchanged. Full details of the algorithm are
given in Hecker and Moses (2015). Each individual rep-
resents a single ant colony, and individuals are initialized
using parameter values drawn from the distribution func-
tions shown in Table 1, column 3. Because the strategies are
non-deterministic, each individual’s fitness is determined by
summing up the number of seeds collected over 8 indepen-
dent runs of the simulation, where each run lasts for 7,200
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Figure 3: Search Performance vs. Volatility and Spatial
Distribution. Random, pheromone, and nest recruitment
evaluated over 16 environments (four pile counts by four
volatility rates). Each bar represents the 95% credible inter-
val resulting from 1,000 runs of the model after an optimal
parameter set has been evolved for the specific environment-
strategy pair. The two recruitment strategies show decreased
performance both as the number of food piles increase and
as the food volatility rate increases. The decrease in variance
as pile count and volatility increases represents the dominant
effect of finding and exploiting clustered piles quickly in the
low pile, low volatility environments.

time steps. At the end of each GA run, the genomes of
the final population of 25 are combined by averaging each
gene’s values. This combined genome constitutes the re-
sulting colony of the evolutionary run. Finally, 1,000 ad-
ditional simulations are run with these strategy parameters
to assess variance of foraging performance for the strat-
egy/environment pair.

Experimental Results

An optimal parameter set was evolved for each combina-
tion of strategy, food distribution, and food volatility. Be-
cause the model is stochastic, 1,000 runs of the model were
then performed with these fixed parameters to generate 95%
credible intervals ! for each experiment (Fig. 3). Pheromone
and nest recruitment perform well when food is stable and
arranged in large piles. Random search performs the best
in environments with highly dispersed food. This is to be
expected as pheromone and nest recruitment leverage infor-
mation about their environment to improve performance; in-
creasing dispersal and volatility decreases the amount of in-
formation gained by finding food. In a majority of cases,
nest recruitment performs as well as, or only slightly worse
than pheromone recruitment.

The performance of all strategies equalizes when food is
uniformly distributed in space (1,280 ‘piles’ of single seeds).

!Contains inner 95% of model outcomes.
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Figure 4: Fixed Parameters Applied to Other Volatility Rates. Four pile parameter sets evolved for a specific volatility rate
applied to four pile environments with different volatility rates. The consistency of random search illustrates its independence
from volatility rate. Pheromone strategy shows little difference between parameter sets evolved for different volatility rates,
suggesting a level of robustness. Conversely, nest interaction shows increased performance by strategies evolved for the specific

environment, suggesting environment specialization.

In this scenario, the collection of one food item gives no in-
formation regarding the location of any other, and the re-
cruitment strategies cannot out-perform random search (as
predicted by Flanagan et al. (2011)). Because each strategy
uses an optimized parameter set for each experiment, and
because random search outperforms both recruitment strate-
gies for 1,280 piles, the recruitment strategies evolve pa-
rameters that eliminate information exchange among ants.
This explains the similarity of the results in the 1,280 pile
environment (Fig. 3). Similarly, information becomes less
valuable in highly volatile environments. At volatility rates
of 2.5 round trips, recruitment is only effective in the single
pile scenario. In these cases of both maximum food piles and
high volatility, recruitment strategies evolve away the use of
any form of recruitment and behave as random search.

Because random search does not use any memory, food
volatility has a minimal effect on its efficiency. Ant colonies
using a random walk use similar parameter sets independent
of volatility. Conversely, pile distribution does have an ef-
fect on random search efficiency. Tight clustering of food re-
sources hinders random search even though total food quan-
tity is held constant. There is also a positive relationship
between pile size and overall variance (Fig. 3). Food spread
evenly through space results in very consistent searches for
all ants. Conversely, the distance from the nest to large piles
of food will have a strong effect on the result of any given
run. This effect is minimized as volatility increases because
high volatility leads to multiple random pile sites.

Evolved values for the correlation in the random walk
tend to be small: on the order of 0.1 radians. These values
lead to relatively straight search vectors. Because ants return
to the nest after finding food, and because their search paths
are relatively straight, food hidden behind nearer patches
will be found last. The number of straight trajectories from
the nest that find food is proportional to the sum of the diam-
eters of the food piles, which scale as the square root of the

size of the pile, not counting overlap. This means there are
fewer straight trajectories from the nest that intersect food
in clustered environments, and may explain why the random
search strategy does worse there. Evolved values for the un-
informed turning coefficient for the two recruitment strate-
gies are generally higher than those of the random search: on
the order of 0.15 radians. A larger turning coefficient corre-
sponds to a random walk closer to the nest. This difference
may indicate that the recruitment strategies more thoroughly
exploit food resources close to the nest.

Fixed Parameters

Pheromone and nest recruitment are efficient strategies in
the 1,280 pile environments and the 2.5 round trip volatility
environments only because the optimal parameter sets for
each reduce them to random search. We used fixed param-
eter sets that enforce the use of informed search to better
evaluate the recruitment strategies in these environments.

Each strategy evolved unique parameter sets for each level
of volatility. Here, parameter sets from specific volatilities
were applied to each of the other volatility rates as well as
the extremely volatile one round trip case for the four pile
food spatial distribution (Fig. 4).

The results show a consistent decrease in performance
by the two recruitment strategies as volatility is increased.
Recruitment of ants to a localized pile works until the pile
moves, at which point ants are recruited to an area that no
longer contains food. The fixed parameter strategies are not
outperformed by the random strategy in the 2.5 round trip
environment, suggesting 2.5 round trips may be an approx-
imate threshold beyond which recruitment does not work.
This may be because while highly volatile, persistence of 2.5
round trips still offers ant colonies enough time to leverage
information before the pile disappears. Recruitment strate-
gies evolved for more stable environments perform worse
than the effectively random search strategy in the extreme
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Figure 5: Fixed Parameters Applied to Other Pile Sizes.
Parameter sets evolved for the stable single pile environment
applied to stable environments of all pile distributions. Re-
cruitment strategies designed for a highly clustered environ-
ment do poorly as food becomes more distributed. Random-
ized search strategies evolved for a clustered environment
perform well in distributed environments.

volatility case, showing that recruitment strategies can ac-
tively hinder search when used in the wrong environment.

Further analysis reveals that pheromone success is not de-
pendent on whether the pheromone parameters were evolved
for the proper volatility rate, except in the extreme case:
specifically the parameters evolved for the 10 round trip
volatility case perform worse for that environment than the
parameters evolved for the stable case. Conversely, nest in-
teraction performance is always highest by the parameter set
evolved for that specific volatility rate. The best example of
this in the five round trip environment, where the five round
trip strategy improves on the others by over 33% (Fig. 5).

As explained in the previous section, the effectiveness
of the random strategy is not strongly correlated with the
volatility rate. The results of Figure 4 confirm this and also
highlight the increase in performance as volatility increases.

Because each parameter set is evolved for a specific
volatility rate, we expect that it should out-perform any pa-
rameter set evolved for a different volatility rate. This holds
true except for the pheromone 10 round trip data point,
where the parameters evolved for the stable environment
perform the best. This is likely due to the similarity between
the stable and 10 round trip environment, and the inability
of the GA to evolve a globally optimal set of parameters for
each environment due to computational limitations.

Similar to the fixed volatility parameter runs, results show
that recruitment strategies evolved for clustered environ-
ments perform poorly in a spatially distributed environment
(Fig. 5). In each case, recruitment of other ants to the lo-
cation of a previously collected food source leads to a now
empty area, actively hindering search. Conversely, a random
strategy evolved for a clustered environment is able to per-
form well in more distributed environments as it does not get
stuck looking for more food in the same location.
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Figure 6: Search Performance in Random Environments.
Parameter sets were evolved for environments with variable
volatility. Results are plotted as mean values inside their
95% credible intervals. Each result (thick middle) is plotted
between results for the stable environment (left) and results
for the 2.5 round trip environment (right). The results show
a slight performance increase versus the 2.5 round trip sce-
nario for the two recruitment strategies. The variance of the
results for the recruitment strategies are large, suggesting the
use of recruitment in random environments is helpful.

Variable Volatility

A consistent environment is not a reasonable assumption in
the real world. To test the ability of each search strategy to
cope with an uncertain level of volatility, we evolved new
parameter sets in the 1, 4, and 16 pile cases where volatility
was chosen uniformly at random to be between 1.25 round
trips and stable for each iteration. Assuming 2.5 round trips
is a reasonable threshold between environments where re-
cruitment may be used beneficially and not, this produced a
distribution of environments where half would benefit from
recruitment and half would not (the functional volatility pa-
rameter is inversely proportional to the round trip unit). Sim-
ilar to the original experiment, 1,000 runs were performed
(each with a random volatility rate) once the parameters
were set by the GA to generate credible intervals (Fig. 6).

Similar to previous results, the success of the random
strategy is not strongly affected by volatility. A slight in-
crease in performance versus the stable environment is con-
sistent with results shown in Figures 3 and 4. Pheromone
and nest recruitment strategies show slight improvements
over the 2.5 round trip environments. Because random
search results in low variance, the large variance of the re-
cruitment strategies, as well as the general improvement in
performance, shows that the recruitment strategies evolve
parameter sets that make use of information, even when that
information is short-lived.

Discussion

The fact that ants use different foraging strategies in differ-
ent environments (Lanan, 2014) suggests that each strategy
has been selected and tailored through evolution to perform
well in that environment. We used a spatial computational
model to study this hypothesis, simulating three general and
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customizable strategies that subsume most known biologi-
cal ant behavior. The results show that information-based
strategies, such as pheromones and nest recruitment, per-
form worse as food becomes more spatially distributed and
volatile. Success of random search, which does not rely on
information, is not affected by food volatility, and performs
better when food is widely dispersed. In extreme cases of
dispersion and volatility, information-based searches per-
form worse than random search. Ants foraging in environ-
ments with unpredictable volatility are able to improve their
performance only slightly using recruitment.

These results are consistent with previous findings
(Hecker and Moses, 2015), which considered only food dis-
tribution: colonies that forage for clustered resources use
recruitment-based strategies to exploit information, while
colonies that forage for randomly distributed resources avoid
recruiting and instead focus on efficient correlated random
search. Further, colonies are most efficient when foraging on
the distribution for which they are evolved, although some
foraging strategies are sufficiently flexible to function well
on different distributions. The study reported here extends
this work to consider volatility and suggests that nest re-
cruitment and random search may be better alternatives to
pheromone recruitment in the right settings.

Implications For Robot Swarms

Chemical pheromones provide foraging ants with a stig-
mergic, mass recruitment method that is highly scalable,
fully decentralized, and generally tolerant of environments
with little or no volatility. Robot swarms that mimic ant
pheromones, on the other hand, are restricted to forag-
ing in tightly controlled environments that require complex,
monolithic infrastructure. For example, swarm researchers
have constructed elaborate stigmergic mechanisms using an
always-on ink pen and white paper flooring (Svennebring
and Koenig, 2004); a tightly-coupled video camera, video
projector, and vision processing system (Garnier et al.,
2007); and a phosphorescent-painted floor combined with
ultraviolet light emitters (Mayet et al., 2010).

Ants also use simpler, more primitive recruitment strate-
gies such as tandem running and group raids, which include
a local recruitment display to stimulate nest mates to re-
turn to high-quality food patches (Cassill, 2003). Robot
swarms mimic these short-range recruitment strategies using
robot-to-robot physical connections (Krieger et al., 2000),
nearest-neighbor local communication (Schmickl and Crail-
sheim, 2008), and robot-chain path formation (Nouyan et al.,
2009). These swarms employ relatively simple communi-
cation schemes that do not require global coordination or
preexisting infrastructure in order to collectively forage for
resources or aggregate in target areas.

The results of this study demonstrate that nest recruit-
ment strategies are at least as efficient as pheromone recruit-
ment strategies for many environments. Nest recruitment

is relatively simple to implement in robot swarms, while
pheromone recruitment requires robot- and environment-
specific infrastructure. Further, the foraging success of nest
recruiters depends only on local, agent-to-agent communi-
cation, while pheromone recruiters often depend on global
coordination with a single point of failure. We therefore
suggest that research in swarm robotics should focus less on
mimicking ant stigmergy, and more on designing and eval-
uating new decentralized information-sharing protocols that
are more scalable and easier to implement in natural envi-
ronments as foraging strategies for real robots.

Comparison To Biological Ants

Our results show that pheromone and nest recruitment work
best in stable clustered environments and that random search
works best in environments of high dispersal. We evalu-
ate these statements by comparing them to a comprehen-
sive review of physical ants and their habitats (Lanan, 2014).
Lanan categorizes the use of ant search strategies over four
environmental dimensions, one being spatial distribution of
food and another being frequency of food occurrence, which
is similar to volatility. Of the 402 species of ants examined
in Lanan (2014), 58 were able to be classified completely
into non-overlapping categories.

Of these 58, 13 forage in environments of high food dis-
persal: seven use random search to forage, three use long
term trails. Of the three remaining species, two use a form
of nest recruitment in what can be considered moderately
volatile, which agrees with our model. The three species
that use long term trails forage in a space of high food abun-
dance, such that a trail to a specific location will not exhaust
the resources located there. Our model did not explore the
effects of high food abundance.

Of the rest of the 58 categorized ant species, 39 forage
in environments of high spatial clustering of food. All but
four of these use long term pheromone trails, as predicted
by our model. Of those, one uses site fidelity in a resource
rich area, one is listed as random although the author notes
they visit the same location repeatedly, one harvests insects
in a highly volatile environment, and one forages randomly
and seems to be an exception worthy of future study.

Thus, of the physical ants able to be classified into cate-
gories defined by our model, our model immediately agrees
with 80.7% of the observations, with an additional 9.6%
consistent with the addition of site fidelity and food volatil-
ity. interesting case studies for future work.

Conclusions

The phrase ‘ant foraging’ is nearly synonymous with
pheromone trails in computer science. However, field
studies have shown that numerous ant species do not use
pheromone recruitment. This suggests that there are en-
vironments for which alternative foraging strategies are at

Drew Levin, Joshua P. Hecker, Melanie E. Moses, Stephanie Forrest (2015) Volatility and spatial distribution of resources
determine ant foraging strategies. Proceedings of the European Conference on Artificial Life 2015, pp. 256-263



least as efficient as the use of pheromone, or that pheromone
based search can be detrimental to the nest.

Lanan (2014) cataloged hundreds of species of ants to cre-
ate a classification of ant foraging strategies given their envi-
ronment. Here we analyze three of these foraging strategies
across two environmental dimensions: spatial distribution
and volatility of food. We find that nest recruitment per-
forms nearly as well as pheromone recruitment in all envi-
ronments, and that simple random search is more efficient
than either when resources are highly dispersed or volatile.
Our results, coupled with observations by Lanan, suggest ant
species have evolved the use of optimal foraging strategies
for their environment.

Understanding how and why ants use different strategies
in different environments is critical for biology-inspired al-
gorithmic design. In many cases, an algorithm ill-suited
to its environment will perform worse than a simpler naive
strategy. Knowing when and how to use these simpler strate-
gies may improve distributed search and swarm robotics.
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